$$ \text { Let } A=\left[\begin{array}{l} 1 \\ 1 \\ 1 \end{array}\right] \text { and } B=\left[\begin{array}{ccc} 9^{2} & -10^{2} & 11^{2} \\ 12^{2} & 13^{2} & -14^{2} \\ -15^{2} & 16^{2} & 17^{2} \end{array}\right] \text {, then the value of } A^{\prime} B A \text { is: } $$
If the system of linear equations.
$$8x + y + 4z = - 2$$
$$x + y + z = 0$$
$$\lambda x - 3y = \mu $$
has infinitely many solutions, then the distance of the point $$\left( {\lambda ,\mu , - {1 \over 2}} \right)$$ from the plane $$8x + y + 4z + 2 = 0$$ is :
Let A be a 2 $$\times$$ 2 matrix with det (A) = $$-$$ 1 and det ((A + I) (Adj (A) + I)) = 4. Then the sum of the diagonal elements of A can be :
The number of real values of $$\lambda$$, such that the system of linear equations
2x $$-$$ 3y + 5z = 9
x + 3y $$-$$ z = $$-$$18
3x $$-$$ y + ($$\lambda$$2 $$-$$ | $$\lambda$$ |)z = 16
has no solutions, is