1
JEE Main 2024 (Online) 1st February Evening Shift
+4
-1
Let the system of equations $x+2 y+3 z=5,2 x+3 y+z=9,4 x+3 y+\lambda z=\mu$ have infinite number of solutions. Then $\lambda+2 \mu$ is equal to :
A
22
B
17
C
15
D
28
2
JEE Main 2024 (Online) 1st February Morning Shift
+4
-1
If $\mathrm{A}=\left[\begin{array}{cc}\sqrt{2} & 1 \\ -1 & \sqrt{2}\end{array}\right], \mathrm{B}=\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right], \mathrm{C}=\mathrm{ABA}^{\mathrm{T}}$ and $\mathrm{X}=\mathrm{A}^{\mathrm{T}} \mathrm{C}^2 \mathrm{~A}$, then $\operatorname{det} \mathrm{X}$ is equal to :
A
243
B
729
C
27
D
891
3
JEE Main 2024 (Online) 1st February Morning Shift
+4
-1
If the system of equations

\begin{aligned} & 2 x+3 y-z=5 \\\\ & x+\alpha y+3 z=-4 \\\\ & 3 x-y+\beta z=7 \end{aligned}

has infinitely many solutions, then $13 \alpha \beta$ is equal to :
A
1110
B
1120
C
1210
D
1220
4
JEE Main 2024 (Online) 31st January Evening Shift
+4
-1

Let $$A$$ be a $$3 \times 3$$ real matrix such that

$$A\left(\begin{array}{l} 1 \\ 0 \\ 1 \end{array}\right)=2\left(\begin{array}{l} 1 \\ 0 \\ 1 \end{array}\right), A\left(\begin{array}{l} -1 \\ 0 \\ 1 \end{array}\right)=4\left(\begin{array}{l} -1 \\ 0 \\ 1 \end{array}\right), A\left(\begin{array}{l} 0 \\ 1 \\ 0 \end{array}\right)=2\left(\begin{array}{l} 0 \\ 1 \\ 0 \end{array}\right) \text {. }$$

Then, the system $$(A-3 I)\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)$$ has :

A
exactly two solutions
B
infinitely many solutions
C
unique solution
D
no solution
EXAM MAP
Medical
NEET