1
JEE Main 2020 (Online) 4th September Evening Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
Suppose the vectors x1, x2 and x3 are the
solutions of the system of linear equations,
Ax = b when the vector b on the right side is equal to b1, b2 and b3 respectively. if

$${x_1} = \left[ {\matrix{ 1 \cr 1 \cr 1 \cr } } \right]$$, $${x_2} = \left[ {\matrix{ 0 \cr 2 \cr 1 \cr } } \right]$$, $${x_3} = \left[ {\matrix{ 0 \cr 0 \cr 1 \cr } } \right]$$

$${b_1} = \left[ {\matrix{ 1 \cr 0 \cr 0 \cr } } \right]$$, $${b_2} = \left[ {\matrix{ 0 \cr 2 \cr 0 \cr } } \right]$$ and $${b_3} = \left[ {\matrix{ 0 \cr 0 \cr 2 \cr } } \right]$$,
then the determinant of A is equal to :
A
$${3 \over 2}$$
B
4
C
2
D
$${1 \over 2}$$
2
JEE Main 2020 (Online) 4th September Evening Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
If the system of equations
x+y+z=2
2x+4y–z=6
3x+2y+$$\lambda $$z=$$\mu $$
has infinitely many solutions, then
A
2$$\lambda $$ - $$\mu $$ = 5
B
$$\lambda $$ - 2$$\mu $$ = -5
C
2$$\lambda $$ + $$\mu $$ = 14
D
$$\lambda $$ + 2$$\mu $$ = 14
3
JEE Main 2020 (Online) 4th September Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
If $$A = \left[ {\matrix{ {\cos \theta } & {i\sin \theta } \cr {i\sin \theta } & {\cos \theta } \cr } } \right]$$, $$\left( {\theta = {\pi \over {24}}} \right)$$

and $${A^5} = \left[ {\matrix{ a & b \cr c & d \cr } } \right]$$, where $$i = \sqrt { - 1} $$ then which one of the following is not true?
A
$$a$$2 - $$c$$2 = 1
B
$$0 \le {a^2} + {b^2} \le 1$$
C
$$ a$$2 - $$d$$2 = 0
D
$${a^2} - {b^2} = {1 \over 2}$$
4
JEE Main 2020 (Online) 3rd September Evening Slot
MCQ (Single Correct Answer)
+4
-1
Out of Syllabus
Change Language
Let A be a 3 $$ \times $$ 3 matrix such that
adj A = $$\left[ {\matrix{ 2 & { - 1} & 1 \cr { - 1} & 0 & 2 \cr 1 & { - 2} & { - 1} \cr } } \right]$$ and B = adj(adj A).

If |A| = $$\lambda $$ and |(B-1)T| = $$\mu $$ , then the ordered pair,
(|$$\lambda $$|, $$\mu $$) is equal to :
A
(3, 81)
B
$$\left( {9,{1 \over 9}} \right)$$
C
$$\left( {3,{1 \over {81}}} \right)$$
D
$$\left( {9,{1 \over {81}}} \right)$$
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12