1
JEE Main 2023 (Online) 11th April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If the system of linear equations

$$ \begin{aligned} & 7 x+11 y+\alpha z=13 \\\\ & 5 x+4 y+7 z=\beta \\\\ & 175 x+194 y+57 z=361 \end{aligned} $$

has infinitely many solutions, then $$\alpha+\beta+2$$ is equal to :

A
6
B
4
C
5
D
3
2
JEE Main 2023 (Online) 11th April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

$$\left|\begin{array}{ccc}x+1 & x & x \\ x & x+\lambda & x \\ x & x & x+\lambda^{2}\end{array}\right|=\frac{9}{8}(103 x+81)$$, then $$\lambda, \frac{\lambda}{3}$$ are the roots of the equation :

A
$$4 x^{2}+24 x-27=0$$
B
$$4 x^{2}-24 x+27=0$$
C
$$4 x^{2}-24 x-27=0$$
D
$$4 x^{2}+24 x+27=0$$
3
JEE Main 2023 (Online) 11th April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$\mathrm{A}$$ be a $$2 \times 2$$ matrix with real entries such that $$\mathrm{A}'=\alpha \mathrm{A}+\mathrm{I}$$, where $$\alpha \in \mathbb{R}-\{-1,1\}$$. If $$\operatorname{det}\left(A^{2}-A\right)=4$$, then the sum of all possible values of $$\alpha$$ is equal to :

A
2
B
$$\frac{3}{2}$$
C
0
D
$$\frac{5}{2}$$
4
JEE Main 2023 (Online) 10th April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Out of Syllabus
Change Language

If $$\mathrm{A}=\frac{1}{5 ! 6 ! 7 !}\left[\begin{array}{ccc}5 ! & 6 ! & 7 ! \\ 6 ! & 7 ! & 8 ! \\ 7 ! & 8 ! & 9 !\end{array}\right]$$, then $$|\operatorname{adj}(\operatorname{adj}(2 \mathrm{~A}))|$$ is equal to :

A
$$2^{12}$$
B
$$2^{20}$$
C
$$2^{8}$$
D
$$2^{16}$$
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12