1
JEE Main 2023 (Online) 31st January Morning Shift
+4
-1

Let $$A = \left( {\matrix{ 1 & 0 & 0 \cr 0 & 4 & { - 1} \cr 0 & {12} & { - 3} \cr } } \right)$$. Then the sum of the diagonal elements of the matrix $${(A + I)^{11}}$$ is equal to :

A
4094
B
2050
C
6144
D
4097
2
JEE Main 2023 (Online) 30th January Evening Shift
+4
-1
For $\alpha, \beta \in \mathbb{R}$, suppose the system of linear equations

\begin{aligned} & x-y+z=5 \\ & 2 x+2 y+\alpha z=8 \\ & 3 x-y+4 z=\beta \end{aligned}

has infinitely many solutions. Then $\alpha$ and $\beta$ are the roots of :
A
$x^2+18 x+56=0$
B
$x^2-10 x+16=0$
C
$x^2+14 x+24=0$
D
$x^2-18 x+56=0$
3
JEE Main 2023 (Online) 30th January Evening Shift
+4
-1
Out of Syllabus
If $P$ is a $3 \times 3$ real matrix such that $P^T=a P+(a-1) I$, where $a>1$, then :
A
$|A d j P|=1$
B
$|A d j P|>1$
C
$|A d j P|=\frac{1}{2}$
D
$P$ is a singular matrix
4
JEE Main 2023 (Online) 30th January Morning Shift
+4
-1

Let the system of linear equations

$$x+y+kz=2$$

$$2x+3y-z=1$$

$$3x+4y+2z=k$$

have infinitely many solutions. Then the system

$$(k+1)x+(2k-1)y=7$$

$$(2k+1)x+(k+5)y=10$$

has :

A
unique solution satisfying $$x-y=1$$
B
infinitely many solutions
C
no solution
D
unique solution satisfying $$x+y=1$$
JEE Main Subjects
Physics
Mechanics
Electricity
Optics
Modern Physics
Chemistry
Physical Chemistry
Inorganic Chemistry
Organic Chemistry
Mathematics
Algebra
Trigonometry
Coordinate Geometry
Calculus
EXAM MAP
Joint Entrance Examination