1
JEE Main 2023 (Online) 30th January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let the system of linear equations

$$x+y+kz=2$$

$$2x+3y-z=1$$

$$3x+4y+2z=k$$

have infinitely many solutions. Then the system

$$(k+1)x+(2k-1)y=7$$

$$(2k+1)x+(k+5)y=10$$

has :

A
unique solution satisfying $$x-y=1$$
B
infinitely many solutions
C
no solution
D
unique solution satisfying $$x+y=1$$
2
JEE Main 2023 (Online) 30th January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Out of Syllabus
Change Language

Let $$A=\left(\begin{array}{cc}\mathrm{m} & \mathrm{n} \\ \mathrm{p} & \mathrm{q}\end{array}\right), \mathrm{d}=|\mathrm{A}| \neq 0$$ and $$\mathrm{|A-d(A d j A)|=0}$$. Then

A
$$1+\mathrm{d}^{2}=\mathrm{m}^{2}+\mathrm{q}^{2}$$
B
$$1+d^{2}=(m+q)^{2}$$
C
$$(1+d)^{2}=m^{2}+q^{2}$$
D
$$(1+d)^{2}=(m+q)^{2}$$
3
JEE Main 2023 (Online) 29th January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Out of Syllabus
Change Language

The set of all values of $$\mathrm{t\in \mathbb{R}}$$, for which the matrix

$$\left[ {\matrix{ {{e^t}} & {{e^{ - t}}(\sin t - 2\cos t)} & {{e^{ - t}}( - 2\sin t - \cos t)} \cr {{e^t}} & {{e^{ - t}}(2\sin t + \cos t)} & {{e^{ - t}}(\sin t - 2\cos t)} \cr {{e^t}} & {{e^{ - t}}\cos t} & {{e^{ - t}}\sin t} \cr } } \right]$$ is invertible, is :

A
$$\left\{ {k\pi ,k \in \mathbb{Z}} \right\}$$
B
$$\mathbb{R}$$
C
$$\left\{ {(2k + 1){\pi \over 2},k \in \mathbb{Z}} \right\}$$
D
$$\left\{ {k\pi + {\pi \over 4},k \in \mathbb{Z}} \right\}$$
4
JEE Main 2023 (Online) 29th January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$\alpha$$ and $$\beta$$ be real numbers. Consider a 3 $$\times$$ 3 matrix A such that $$A^2=3A+\alpha I$$. If $$A^4=21A+\beta I$$, then

A
$$\alpha=1$$
B
$$\alpha=4$$
C
$$\beta=8$$
D
$$\beta=-8$$
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12