1
JEE Main 2021 (Online) 18th March Evening Shift
+4
-1
Let the system of linear equations

4x + $$\lambda$$y + 2z = 0

2x $$-$$ y + z = 0

$$\mu$$x + 2y + 3z = 0, $$\lambda$$, $$\mu$$$$\in$$R.

has a non-trivial solution. Then which of the following is true?
A
$$\mu$$ = 6, $$\lambda$$$$\in$$R
B
$$\lambda$$ = 3, $$\mu$$$$\in$$R
C
$$\mu$$ = $$-$$6, $$\lambda$$$$\in$$R
D
$$\lambda$$ = 2, $$\mu$$$$\in$$R
2
JEE Main 2021 (Online) 18th March Morning Shift
+4
-1
The solutions of the equation $$\left| {\matrix{ {1 + {{\sin }^2}x} & {{{\sin }^2}x} & {{{\sin }^2}x} \cr {{{\cos }^2}x} & {1 + {{\cos }^2}x} & {{{\cos }^2}x} \cr {4\sin 2x} & {4\sin 2x} & {1 + 4\sin 2x} \cr } } \right| = 0,(0 < x < \pi )$$, are
A
$${\pi \over {12}},{\pi \over 6}$$
B
$${\pi \over 6},{{5\pi } \over 6}$$
C
$${{5\pi } \over {12}},{{7\pi } \over {12}}$$
D
$${{7\pi } \over {12}},{{11\pi } \over {12}}$$
3
JEE Main 2021 (Online) 18th March Morning Shift
+4
-1
Let $$\alpha$$, $$\beta$$, $$\gamma$$ be the real roots of the equation, x3 + ax2 + bx + c = 0, (a, b, c $$\in$$ R and a, b $$\ne$$ 0). If the system of equations (in u, v, w) given by $$\alpha$$u + $$\beta$$v + $$\gamma$$w = 0, $$\beta$$u + $$\gamma$$v + $$\alpha$$w = 0; $$\gamma$$u + $$\alpha$$v + $$\beta$$w = 0 has non-trivial solution, then the value of $${{{a^2}} \over b}$$ is
A
5
B
3
C
1
D
0
4
JEE Main 2021 (Online) 18th March Morning Shift
+4
-1
Let $$A + 2B = \left[ {\matrix{ 1 & 2 & 0 \cr 6 & { - 3} & 3 \cr { - 5} & 3 & 1 \cr } } \right]$$ and $$2A - B = \left[ {\matrix{ 2 & { - 1} & 5 \cr 2 & { - 1} & 6 \cr 0 & 1 & 2 \cr } } \right]$$. If Tr(A) denotes the sum of all diagonal elements of the matrix A, then Tr(A) $$-$$ Tr(B) has value equal to
A
1
B
2
C
0
D
3
EXAM MAP
Medical
NEET