If $$1,$$ $$\omega ,{\omega ^2}$$ are the cube roots of unity, then
$$\Delta = \left| {\matrix{
1 & {{\omega ^n}} & {{\omega ^{2n}}} \cr
{{\omega ^n}} & {{\omega ^{2n}}} & 1 \cr
{{\omega ^{2n}}} & 1 & {{\omega ^n}} \cr
} } \right|$$ is equal to
Explanation
$$\Delta = \left| {\matrix{
1 & {{\omega ^n}} & {{\omega ^{2n}}} \cr
{{\omega ^n}} & {{\omega ^{2n}}} & 1 \cr
{{\omega ^{2n}}} & 1 & {{\omega ^n}} \cr
} } \right|$$
$$ = 1\left( {{\omega ^{3n}} - 1} \right) - {\omega ^n}\left( {{\omega ^{2n}} - {\omega ^{2n}}} \right) + $$
$$\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{\omega ^{2n}}\left( {{\omega ^n} - {\omega ^{4n}}} \right)$$
$$ = {\omega ^{3n}} - 1 - 0 + {\omega ^{3n}} - {\omega ^{6n}}$$
$$ = 1 - 1 + 1 - 1 = 0$$ $$\left[ {} \right.$$ as $$\,\,\,\,\,$$ $${\omega ^{3n}} = 1$$ $$\left. {} \right]$$