For $$\alpha, \beta \in \mathbb{R}$$ and a natural number $$n$$, let $$A_r=\left|\begin{array}{ccc}r & 1 & \frac{n^2}{2}+\alpha \\ 2 r & 2 & n^2-\beta \\ 3 r-2 & 3 & \frac{n(3 n-1)}{2}\end{array}\right|$$. Then $$2 A_{10}-A_8$$ is
The values of $$m, n$$, for which the system of equations
$$\begin{aligned} & x+y+z=4, \\ & 2 x+5 y+5 z=17, \\ & x+2 y+\mathrm{m} z=\mathrm{n} \end{aligned}$$
has infinitely many solutions, satisfy the equation :
Let $$\alpha \beta \neq 0$$ and $$A=\left[\begin{array}{rrr}\beta & \alpha & 3 \\ \alpha & \alpha & \beta \\ -\beta & \alpha & 2 \alpha\end{array}\right]$$. If $$B=\left[\begin{array}{rrr}3 \alpha & -9 & 3 \alpha \\ -\alpha & 7 & -2 \alpha \\ -2 \alpha & 5 & -2 \beta\end{array}\right]$$ is the matrix of cofactors of the elements of $$A$$, then $$\operatorname{det}(A B)$$ is equal to :
Let A and B be two square matrices of order 3 such that $$\mathrm{|A|=3}$$ and $$\mathrm{|B|=2}$$. Then $$|\mathrm{A}^{\mathrm{T}} \mathrm{A}(\operatorname{adj}(2 \mathrm{~A}))^{-1}(\operatorname{adj}(4 \mathrm{~B}))(\operatorname{adj}(\mathrm{AB}))^{-1} \mathrm{AA}^{\mathrm{T}}|$$ is equal to :