1
JEE Main 2021 (Online) 27th July Evening Shift
MCQ (Single Correct Answer)
+4
-1
Out of Syllabus
Change Language
Let A and B be two 3 $$\times$$ 3 real matrices such that (A2 $$-$$ B2) is invertible matrix. If A5 = B5 and A3B2 = A2B3, then the value of the determinant of the matrix A3 + B3 is equal to :
A
2
B
4
C
1
D
0
2
JEE Main 2021 (Online) 27th July Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
Let $$A = \left[ {\matrix{ 1 & 2 \cr { - 1} & 4 \cr } } \right]$$. If A$$-$$1 = $$\alpha$$I + $$\beta$$A, $$\alpha$$, $$\beta$$ $$\in$$ R, I is a 2 $$\times$$ 2 identity matrix then 4($$\alpha$$ $$-$$ $$\beta$$) is equal to :
A
5
B
$${8 \over 3}$$
C
2
D
4
3
JEE Main 2021 (Online) 25th July Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
The number of distinct real roots

of $$\left| {\matrix{ {\sin x} & {\cos x} & {\cos x} \cr {\cos x} & {\sin x} & {\cos x} \cr {\cos x} & {\cos x} & {\sin x} \cr } } \right| = 0$$ in the interval $$ - {\pi \over 4} \le x \le {\pi \over 4}$$ is :
A
4
B
1
C
2
D
3
4
JEE Main 2021 (Online) 25th July Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
If $$P = \left[ {\matrix{ 1 & 0 \cr {{1 \over 2}} & 1 \cr } } \right]$$, then P50 is :
A
$$\left[ {\matrix{ 1 & 0 \cr {25} & 1 \cr } } \right]$$
B
$$\left[ {\matrix{ 1 & {50} \cr 0 & 1 \cr } } \right]$$
C
$$\left[ {\matrix{ 1 & {25} \cr 0 & 1 \cr } } \right]$$
D
$$\left[ {\matrix{ 1 & 0 \cr {50} & 1 \cr } } \right]$$
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12