Let the system of equations
x + 5y - z = 1
4x + 3y - 3z = 7
24x + y + λz = μ
λ, μ ∈ ℝ, have infinitely many solutions. Then the number of the solutions of this system,
if x, y, z are integers and satisfy 7 ≤ x + y + z ≤ 77, is :
Let $A$ be a $3 \times 3$ matrix such that $|\operatorname{adj}(\operatorname{adj}(\operatorname{adj} \mathrm{A}))|=81$.
If $S=\left\{n \in \mathbb{Z}:(|\operatorname{adj}(\operatorname{adj} A)|)^{\frac{(n-1)^2}{2}}=|A|^{\left(3 n^2-5 n-4\right)}\right\}$, then $\sum_\limits{n \in S}\left|A^{\left(n^2+n\right)}\right|$ is equal to :
Let the system of equations :
$$ \begin{aligned} & 2 x+3 y+5 z=9 \\ & 7 x+3 y-2 z=8 \\ & 12 x+3 y-(4+\lambda) z=16-\mu \end{aligned}$$
have infinitely many solutions. Then the radius of the circle centred at $(\lambda, \mu)$ and touching the line $4 x=3 y$ is :
Let the matrix $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$ satisfy $A^n=A^{n-2}+A^2-I$ for $n \geqslant 3$. Then the sum of all the elements of $\mathrm{A}^{50}$ is :