1
JEE Main 2019 (Online) 9th January Evening Slot
+4
-1
If the system of linear equations
x $$-$$ 4y + 7z = g
3y $$-$$ 5z = h
$$-$$2x + 5y $$-$$ 9z = k
is consistent, then :
A
g + 2h + k = 0
B
g + h + 2k = 0
C
2g + h + k = 0
D
g + h + k = 0
2
JEE Main 2019 (Online) 9th January Evening Slot
+4
-1
If   $$A = \left[ {\matrix{ {{e^t}} & {{e^{ - t}}\cos t} & {{e^{ - t}}\sin t} \cr {{e^t}} & { - {e^{ - t}}\cos t - {e^{ - t}}\sin t} & { - {e^{ - t}}\sin t + {e^{ - t}}co{\mathop{\rm s}\nolimits} t} \cr {{e^t}} & {2{e^{ - t}}\sin t} & { - 2{e^{ - t}}\cos t} \cr } } \right]$$

then A is :
A
invertible for all t$$\in$$R.
B
invertible only if t $$=$$ $$\pi$$
C
not invertible for any t$$\in$$R
D
invertible only if t $$=$$ $${\pi \over 2}$$.
3
JEE Main 2019 (Online) 9th January Morning Slot
+4
-1
If $$A = \left[ {\matrix{ {\cos \theta } & { - \sin \theta } \cr {\sin \theta } & {\cos \theta } \cr } } \right]$$, then the matrix A–50 when $$\theta$$ = $$\pi \over 12$$, is equal to :
A
$$\left[ {\matrix{ { {{\sqrt 3 } \over 2}} & { - {1 \over 2}} \cr {{{ 1} \over 2}} & {{{\sqrt 3 } \over 2}} \cr } } \right]$$
B
$$\left[ {\matrix{ {{1 \over 2}} & -{{{\sqrt 3 } \over 2}} \cr {{{\sqrt 3 } \over 2}} & {{{ - 1} \over 2}} \cr } } \right]$$
C
$$\left[ {\matrix{ {{{\sqrt 3 } \over 2}} & {{1 \over 2}} \cr -{{1 \over 2}} & {{{\sqrt 3 } \over 2}} \cr } } \right]$$
D
$$\left[ {\matrix{ {{1 \over 2}} & {{{\sqrt 3 } \over 2}} \cr {-{{\sqrt 3 } \over 2}} & {{{ 1} \over 2}} \cr } } \right]$$
4
JEE Main 2019 (Online) 9th January Morning Slot
+4
-1
The system of linear equations
x + y + z = 2
2x + 3y + 2z = 5
2x + 3y + (a2 – 1) z = a + 1 then
A
has infinitely many solutions for a = 4
B
has a unique solution for |a| = $$\sqrt3$$
C
is inconsistent when |a| = $$\sqrt3$$
D
is inconsistent when a = 4
EXAM MAP
Medical
NEET