The number of real values of $$\lambda$$, such that the system of linear equations
2x $$-$$ 3y + 5z = 9
x + 3y $$-$$ z = $$-$$18
3x $$-$$ y + ($$\lambda$$2 $$-$$ | $$\lambda$$ |)z = 16
has no solutions, is
The number of $$\theta \in(0,4 \pi)$$ for which the system of linear equations
$$ \begin{aligned} &3(\sin 3 \theta) x-y+z=2 \\\\ &3(\cos 2 \theta) x+4 y+3 z=3 \\\\ &6 x+7 y+7 z=9 \end{aligned} $$
has no solution, is :
Let $$A = \left[ {\matrix{ 1 & { - 2} & \alpha \cr \alpha & 2 & { - 1} \cr } } \right]$$ and $$B = \left[ {\matrix{ 2 & \alpha \cr { - 1} & 2 \cr 4 & { - 5} \cr } } \right],\,\alpha \in C$$. Then the absolute value of the sum of all values of $$\alpha$$ for which det(AB) = 0 is :
Let A and B be two square matrices of order 2. If $$det\,(A) = 2$$, $$det\,(B) = 3$$ and $$\det \left( {(\det \,5(det\,A)B){A^2}} \right) = {2^a}{3^b}{5^c}$$ for some a, b, c, $$\in$$ N, then a + b + c is equal to :