Let $$P$$ be a square matrix such that $$P^{2}=I-P$$. For $$\alpha, \beta, \gamma, \delta \in \mathbb{N}$$, if $$P^{\alpha}+P^{\beta}=\gamma I-29 P$$ and $$P^{\alpha}-P^{\beta}=\delta I-13 P$$, then $$\alpha+\beta+\gamma-\delta$$ is equal to :
For the system of equations
$$x+y+z=6$$
$$x+2 y+\alpha z=10$$
$$x+3 y+5 z=\beta$$, which one of the following is NOT true?
If the system of equations
$$x+y+a z=b$$
$$2 x+5 y+2 z=6$$
$$x+2 y+3 z=3$$
has infinitely many solutions, then $$2 a+3 b$$ is equal to :
Let $$\mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right]_{2 \times 2}$$, where $$\mathrm{a}_{\mathrm{ij}} \neq 0$$ for all $$\mathrm{i}, \mathrm{j}$$ and $$\mathrm{A}^{2}=\mathrm{I}$$. Let a be the sum of all diagonal elements of $$\mathrm{A}$$ and $$\mathrm{b}=|\mathrm{A}|$$. Then $$3 a^{2}+4 b^{2}$$ is equal to :