Let $$\alpha$$ and $$\beta$$ be real numbers. Consider a 3 $$\times$$ 3 matrix A such that $$A^2=3A+\alpha I$$. If $$A^4=21A+\beta I$$, then
Consider the following system of equations
$$\alpha x+2y+z=1$$
$$2\alpha x+3y+z=1$$
$$3x+\alpha y+2z=\beta$$
for some $$\alpha,\beta\in \mathbb{R}$$. Then which of the following is NOT correct.
Let A, B, C be 3 $$\times$$ 3 matrices such that A is symmetric and B and C are skew-symmetric. Consider the statements
(S1) A$$^{13}$$ B$$^{26}$$ $$-$$ B$$^{26}$$ A$$^{13}$$ is symmetric
(S2) A$$^{26}$$ C$$^{13}$$ $$-$$ C$$^{13}$$ A$$^{26}$$ is symmetric
Then,
Let $$A = \left[ {\matrix{ {{1 \over {\sqrt {10} }}} & {{3 \over {\sqrt {10} }}} \cr {{{ - 3} \over {\sqrt {10} }}} & {{1 \over {\sqrt {10} }}} \cr } } \right]$$ and $$B = \left[ {\matrix{ 1 & { - i} \cr 0 & 1 \cr } } \right]$$, where $$i = \sqrt { - 1} $$. If $$\mathrm{M=A^T B A}$$, then the inverse of the matrix $$\mathrm{AM^{2023}A^T}$$ is