1
JEE Main 2022 (Online) 28th July Morning Shift
MCQ (Single Correct Answer)
+4
-1
Out of Syllabus
Change Language

Let the matrix $$A=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right]$$ and the matrix $$B_{0}=A^{49}+2 A^{98}$$. If $$B_{n}=A d j\left(B_{n-1}\right)$$ for all $$n \geq 1$$, then $$\operatorname{det}\left(B_{4}\right)$$ is equal to :

A
$$3^{28}$$
B
$$3^{30}$$
C
$$3^{32}$$
D
$$3^{36}$$
2
JEE Main 2022 (Online) 27th July Evening Shift
MCQ (Single Correct Answer)
+4
-1
Out of Syllabus
Change Language

Let $$A=\left(\begin{array}{rr}4 & -2 \\ \alpha & \beta\end{array}\right)$$.

If $$\mathrm{A}^{2}+\gamma \mathrm{A}+18 \mathrm{I}=\mathrm{O}$$, then $$\operatorname{det}(\mathrm{A})$$ is equal to _____________.

A
$$-$$18
B
18
C
$$-$$50
D
50
3
JEE Main 2022 (Online) 27th July Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$A=\left(\begin{array}{cc}1 & 2 \\ -2 & -5\end{array}\right)$$. Let $$\alpha, \beta \in \mathbb{R}$$ be such that $$\alpha A^{2}+\beta A=2 I$$. Then $$\alpha+\beta$$ is equal to

A
$$-$$10
B
$$-$$6
C
6
D
10
4
JEE Main 2022 (Online) 26th July Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

$$ \text { Let } A=\left[\begin{array}{l} 1 \\ 1 \\ 1 \end{array}\right] \text { and } B=\left[\begin{array}{ccc} 9^{2} & -10^{2} & 11^{2} \\ 12^{2} & 13^{2} & -14^{2} \\ -15^{2} & 16^{2} & 17^{2} \end{array}\right] \text {, then the value of } A^{\prime} B A \text { is: } $$

A
1224
B
1042
C
540
D
539
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12