1
JEE Main 2019 (Online) 9th April Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
Let $$\alpha $$ and $$\beta $$ be the roots of the equation x2 + x + 1 = 0. Then for y $$ \ne $$ 0 in R,
$$$\left| {\matrix{ {y + 1} & \alpha & \beta \cr \alpha & {y + \beta } & 1 \cr \beta & 1 & {y + \alpha } \cr } } \right|$$$ is equal to
A
y(y2 – 1)
B
y(y2 – 3)
C
y3
D
y3 – 1
2
JEE Main 2019 (Online) 9th April Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
If $$\left[ {\matrix{ 1 & 1 \cr 0 & 1 \cr } } \right]\left[ {\matrix{ 1 & 2 \cr 0 & 1 \cr } } \right]$$$$\left[ {\matrix{ 1 & 3 \cr 0 & 1 \cr } } \right]$$....$$\left[ {\matrix{ 1 & {n - 1} \cr 0 & 1 \cr } } \right] = \left[ {\matrix{ 1 & {78} \cr 0 & 1 \cr } } \right]$$,

then the inverse of $$\left[ {\matrix{ 1 & n \cr 0 & 1 \cr } } \right]$$ is
A
$$\left[ {\matrix{ 1 & { 0} \cr {12} & 1 \cr } } \right]$$
B
$$\left[ {\matrix{ 1 & { 0} \cr {13} & 1 \cr } } \right]$$
C
$$\left[ {\matrix{ 1 & { - 13} \cr 0 & 1 \cr } } \right]$$
D
$$\left[ {\matrix{ 1 & { - 12} \cr 0 & 1 \cr } } \right]$$
3
JEE Main 2019 (Online) 8th April Evening Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
Let the number 2,b,c be in an A.P. and
A = $$\left[ {\matrix{ 1 & 1 & 1 \cr 2 & b & c \cr 4 & {{b^2}} & {{c^2}} \cr } } \right]$$. If det(A) $$ \in $$ [2, 16], then c lies in the interval :
A
[2, 3)
B
[4, 6]
C
(2 + 23/4, 4)
D
[3, 2 + 23/4]
4
JEE Main 2019 (Online) 8th April Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
Let $$A = \left( {\matrix{ {\cos \alpha } & { - \sin \alpha } \cr {\sin \alpha } & {\cos \alpha } \cr } } \right)$$, ($$\alpha $$ $$ \in $$ R)
such that $${A^{32}} = \left( {\matrix{ 0 & { - 1} \cr 1 & 0 \cr } } \right)$$ then a value of $$\alpha $$ is
A
0
B
$${\pi \over {16}}$$
C
$${\pi \over {32}}$$
D
$${\pi \over {64}}$$
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12