NEW
New Website Launch
Experience the best way to solve previous year questions with mock tests (very detailed analysis), bookmark your favourite questions, practice etc...
1

### AIEEE 2007

Let $$A = \left| {\matrix{ 5 & {5\alpha } & \alpha \cr 0 & \alpha & {5\alpha } \cr 0 & 0 & 5 \cr } } \right|.$$ If $$\,\,\left| {{A^2}} \right| = 25,$$ then $$\,\left| \alpha \right|$$ equals
A
$$1/5$$
B
$$5$$
C
$${5^2}$$
D
$$1$$

## Explanation

$$\left| {{A^2}} \right| = 25 \Rightarrow {\left| A \right|^2} = 25$$

$$\Rightarrow {\left( {25\alpha } \right)^2} = 25 \Rightarrow \left| \alpha \right| = {1 \over 5}$$
2

### AIEEE 2006

Let $$A = \left( {\matrix{ 1 & 2 \cr 3 & 4 \cr } } \right)$$ and $$B = \left( {\matrix{ a & 0 \cr 0 & b \cr } } \right),a,b \in N.$$ Then
A
there cannot exist any $$B$$ such that $$AB=BA$$
B
there exist more then one but finite number of $$B'$$s such that $$AB=BA$$
C
there exists exactly one $$B$$ such that $$AB=BA$$
D
there exist infinitely many $$B'$$s such that $$AB=BA$$

## Explanation

$$A = \left[ {\matrix{ 1 & 2 \cr 3 & 4 \cr } } \right]\,\,\,\,B = \left[ {\matrix{ a & 0 \cr 0 & b \cr } } \right]$$

$$AB = \left[ {\matrix{ a & {2b} \cr {3a} & {4b} \cr } } \right]$$

$$BA = \left[ {\matrix{ a & 0 \cr 0 & b \cr } } \right]\left[ {\matrix{ 1 & 2 \cr 3 & 4 \cr } } \right] = \left[ {\matrix{ a & {2a} \cr {3b} & {4b} \cr } } \right]$$

Hence, $$AB=BA$$ only when $$a=b$$

$$\therefore$$ There can be infinitely many $$B's$$

for which $$AB=BA$$
3

### AIEEE 2006

If $$A$$ and $$B$$ are square matrices of size $$n\, \times \,n$$ such that
$${A^2} - {B^2} = \left( {A - B} \right)\left( {A + B} \right),$$ then which of the following will be always true?
A
$$A=B$$
B
$$AB=BA$$
C
either of $$A$$ or $$B$$ is a zero matrix
D
either of $$A$$ or $$B$$ is identity matrix

## Explanation

$${A^2} - {B^2} = \left( {A - B} \right)\left( {A + B} \right)$$

$${A^2} - {B^2} = {A^2} + AB - BA - {B^2}$$

$$\Rightarrow AB = BA$$
4

### AIEEE 2005

If $${a^2} + {b^2} + {c^2} = - 2$$ and

f$$\left( x \right) = \left| {\matrix{ {1 + {a^2}x} & {\left( {1 + {b^2}} \right)x} & {\left( {1 + {c^2}} \right)x} \cr {\left( {1 + {a^2}} \right)x} & {1 + {b^2}x} & {\left( {1 + {c^2}} \right)x} \cr {\left( {1 + {a^2}} \right)x} & {\left( {1 + {b^2}} \right)x} & {1 + {c^2}x} \cr } } \right|,$$

then f$$(x)$$ is a polynomial of degree

A
$$1$$
B
$$0$$
C
$$3$$
D
$$2$$

## Explanation

Applying, $${C_1} \to {C_1} + {C_2} + {C_3}\,\,\,$$ we get

$$f\left( x \right) = \left| {\matrix{ {1 + \left( {{a^2} + {b^2} + {c^2} + 2} \right)x} & {\left( {1 + {b^2}} \right)x} & {\left( {1 + {c^2}} \right)x} \cr {1 + \left( {{a^2} + {b^2} + {c^2} + 2} \right)x} & {1 + {b^2}x} & {\left( {1 + {c^2}x} \right)} \cr {1 + \left( {{a^2} + {b^2} + {c^2} + 2} \right)x} & {\left( {1 + {b^2}} \right)x} & {1 + {c^2}x} \cr } } \right|$$

$$= \left| {\matrix{ 1 & {\left( {1 + {b^2}} \right)x} & {\left( {1 + {c^2}} \right)x} \cr 1 & {1 + {b^2}x} & {\left( {1 + {c^2}x} \right)} \cr 1 & {\left( {1 + {b^2}} \right)x} & {1 + {c^2}x} \cr } } \right|$$

$$\left[ \, \right.$$ As given that $${a^2} + {b^2} + {c^2} = - 2$$ $$\left. {} \right]$$

$$\therefore$$ $${a^2} + {b^2} + {c^2} + 2 = 0$$

Applying $${R_1} \to {R_1} - {R_2},\,\,\,{R_2} \to {R_2} - {R_3}$$

$$\therefore$$ $$f\left( x \right) = \left| {\matrix{ 0 & {x - 1} & 0 \cr 0 & {1 - x} & {x - 1} \cr 1 & {\left( {1 + {b^2}} \right)x} & {1 + {c^2}x} \cr } } \right|$$

$$f\left( x \right) = {\left( {x - 1} \right)^2}$$

Hence degree $$=2.$$

### Joint Entrance Examination

JEE Main JEE Advanced WB JEE

### Graduate Aptitude Test in Engineering

GATE CSE GATE ECE GATE EE GATE ME GATE CE GATE PI GATE IN

NEET

Class 12