For some $a, b,$ let $f(x)=\left|\begin{array}{ccc}\mathrm{a}+\frac{\sin x}{x} & 1 & \mathrm{~b} \\ \mathrm{a} & 1+\frac{\sin x}{x} & \mathrm{~b} \\ \mathrm{a} & 1 & \mathrm{~b}+\frac{\sin x}{x}\end{array}\right|, x \neq 0, \lim \limits_{x \rightarrow 0} f(x)=\lambda+\mu \mathrm{a}+\nu \mathrm{b}.$ Then $(\lambda+\mu+v)^2$ is equal to :
If the system of equations
$$
\begin{aligned}
& x+2 y-3 z=2 \\
& 2 x+\lambda y+5 z=5 \\
& 14 x+3 y+\mu z=33
\end{aligned}
$$
has infinitely many solutions, then $\lambda+\mu$ is equal to :
If the system of equations
$$\begin{aligned} & 2 x-y+z=4 \\ & 5 x+\lambda y+3 z=12 \\ & 100 x-47 y+\mu z=212 \end{aligned}$$
has infinitely many solutions, then $\mu-2 \lambda$ is equal to
The system of equations
$$\begin{aligned} & x+y+z=6, \\ & x+2 y+5 z=9, \\ & x+5 y+\lambda z=\mu, \end{aligned}$$
has no solution if