1
JEE Main 2025 (Online) 24th January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If the system of equations

$$\begin{aligned} & 2 x-y+z=4 \\ & 5 x+\lambda y+3 z=12 \\ & 100 x-47 y+\mu z=212 \end{aligned}$$

has infinitely many solutions, then $\mu-2 \lambda$ is equal to

A
56
B
59
C
57
D
55
2
JEE Main 2025 (Online) 23rd January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

The system of equations

$$\begin{aligned} & x+y+z=6, \\ & x+2 y+5 z=9, \\ & x+5 y+\lambda z=\mu, \end{aligned}$$

has no solution if

A
$\lambda=17, \mu=18$
B
$\lambda=17, \mu \neq 18$
C
$\lambda=15, \mu \neq 17$
D
$\lambda \neq 17, \mu \neq 18$
3
JEE Main 2025 (Online) 23rd January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $A=\left[a_{i j}\right]$ be a $3 \times 3$ matrix such that $A\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right], A\left[\begin{array}{l}4 \\ 1 \\ 3\end{array}\right]=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$ and $A\left[\begin{array}{l}2 \\ 1 \\ 2\end{array}\right]=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$, then $a_{23}$ equals :

A
2
B
$-$1
C
1
D
0
4
JEE Main 2025 (Online) 23rd January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
 

If the system of equations

$$ \begin{aligned} & (\lambda-1) x+(\lambda-4) y+\lambda z=5 \\ & \lambda x+(\lambda-1) y+(\lambda-4) z=7 \\ & (\lambda+1) x+(\lambda+2) y-(\lambda+2) z=9 \end{aligned}$$

has infinitely many solutions, then $\lambda^2+\lambda$ is equal to

A
20
B
10
C
6
D
12
JEE Main Subjects
EXAM MAP