Let $$\mathrm{A}$$ and $$\mathrm{B}$$ be any two $$3 \times 3$$ symmetric and skew symmetric matrices respectively. Then which of the following is NOT true?
Let the matrix $$A=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right]$$ and the matrix $$B_{0}=A^{49}+2 A^{98}$$. If $$B_{n}=A d j\left(B_{n-1}\right)$$ for all $$n \geq 1$$, then $$\operatorname{det}\left(B_{4}\right)$$ is equal to :
Let $$A=\left(\begin{array}{rr}4 & -2 \\ \alpha & \beta\end{array}\right)$$.
If $$\mathrm{A}^{2}+\gamma \mathrm{A}+18 \mathrm{I}=\mathrm{O}$$, then $$\operatorname{det}(\mathrm{A})$$ is equal to _____________.
Let $$A=\left(\begin{array}{cc}1 & 2 \\ -2 & -5\end{array}\right)$$. Let $$\alpha, \beta \in \mathbb{R}$$ be such that $$\alpha A^{2}+\beta A=2 I$$. Then $$\alpha+\beta$$ is equal to