1
JEE Main 2021 (Online) 26th August Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
Let $$A = \left( {\matrix{ 1 & 0 & 0 \cr 0 & 1 & 1 \cr 1 & 0 & 0 \cr } } \right)$$. Then A2025 $$-$$ A2020 is equal to :
A
A6 $$-$$ A
B
A5
C
A5 $$-$$ A
D
A6
2
JEE Main 2021 (Online) 26th August Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
Let $$\theta \in \left( {0,{\pi \over 2}} \right)$$. If the system of linear equations

$$(1 + {\cos ^2}\theta )x + {\sin ^2}\theta y + 4\sin 3\,\theta z = 0$$

$${\cos ^2}\theta x + (1 + {\sin ^2}\theta )y + 4\sin 3\,\theta z = 0$$

$${\cos ^2}\theta x + {\sin ^2}\theta y + (1 + 4\sin 3\,\theta )z = 0$$

has a non-trivial solution, then the value of $$\theta$$ is :
A
$${{4\pi } \over 9}$$
B
$${{7\pi } \over {18}}$$
C
$${\pi \over {18}}$$
D
$${{5\pi } \over {18}}$$
3
JEE Main 2021 (Online) 26th August Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
If $$A = \left( {\matrix{ {{1 \over {\sqrt 5 }}} & {{2 \over {\sqrt 5 }}} \cr {{{ - 2} \over {\sqrt 5 }}} & {{1 \over {\sqrt 5 }}} \cr } } \right)$$, $$B = \left( {\matrix{ 1 & 0 \cr i & 1 \cr } } \right)$$, $$i = \sqrt { - 1} $$, and Q = ATBA, then the inverse of the matrix A Q2021 AT is equal to :
A
$$\left( {\matrix{ {{1 \over {\sqrt 5 }}} & { - 2021} \cr {2021} & {{1 \over {\sqrt 5 }}} \cr } } \right)$$
B
$$\left( {\matrix{ 1 & 0 \cr { - 2021i} & 1 \cr } } \right)$$
C
$$\left( {\matrix{ 1 & 0 \cr {2021i} & 1 \cr } } \right)$$
D
$$\left( {\matrix{ 1 & { - 2021i} \cr 0 & 1 \cr } } \right)$$
4
JEE Main 2021 (Online) 27th July Evening Shift
MCQ (Single Correct Answer)
+4
-1
Out of Syllabus
Change Language
Let A and B be two 3 $$\times$$ 3 real matrices such that (A2 $$-$$ B2) is invertible matrix. If A5 = B5 and A3B2 = A2B3, then the value of the determinant of the matrix A3 + B3 is equal to :
A
2
B
4
C
1
D
0
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12