1
JEE Main 2023 (Online) 24th January Evening Shift
MCQ (Single Correct Answer)
+4
-1

Let A be a 3 $$\times$$ 3 matrix such that $$\mathrm{|adj(adj(adj~A))|=12^4}$$. Then $$\mathrm{|A^{-1}~adj~A|}$$ is equal to

A
12
B
2$$\sqrt3$$
C
1
D
$$\sqrt6$$
2
JEE Main 2023 (Online) 24th January Evening Shift
MCQ (Single Correct Answer)
+4
-1

If the system of equations

$$x+2y+3z=3$$

$$4x+3y-4z=4$$

$$8x+4y-\lambda z=9+\mu$$

has infinitely many solutions, then the ordered pair ($$\lambda,\mu$$) is equal to :

A
$$\left( {{{72} \over 5},{{21} \over 5}} \right)$$
B
$$\left( { - {{72} \over 5}, - {{21} \over 5}} \right)$$
C
$$\left( { - {{72} \over 5},{{21} \over 5}} \right)$$
D
$$\left( {{{72} \over 5}, - {{21} \over 5}} \right)$$
3
JEE Main 2023 (Online) 24th January Morning Shift
MCQ (Single Correct Answer)
+4
-1

If A and B are two non-zero n $$\times$$ n matrices such that $$\mathrm{A^2+B=A^2B}$$, then :

A
$$\mathrm{A^2B=I}$$
B
$$\mathrm{A^2=I}$$ or $$\mathrm{B=I}$$
C
$$\mathrm{A^2B=BA^2}$$
D
$$\mathrm{AB=I}$$
4
JEE Main 2023 (Online) 24th January Morning Shift
MCQ (Single Correct Answer)
+4
-1

Let $$\alpha$$ be a root of the equation $$(a - c){x^2} + (b - a)x + (c - b) = 0$$ where a, b, c are distinct real numbers such that the matrix $$\left[ {\matrix{ {{\alpha ^2}} & \alpha & 1 \cr 1 & 1 & 1 \cr a & b & c \cr } } \right]$$ is singular. Then, the value of $${{{{(a - c)}^2}} \over {(b - a)(c - b)}} + {{{{(b - a)}^2}} \over {(a - c)(c - b)}} + {{{{(c - b)}^2}} \over {(a - c)(b - a)}}$$ is

A
3
B
6
C
12
D
9
JEE Main Subjects
Physics
Mechanics
Electricity
Optics
Modern Physics
Chemistry
Physical Chemistry
Inorganic Chemistry
Organic Chemistry
Mathematics
Algebra
Trigonometry
Coordinate Geometry
Calculus
EXAM MAP
Joint Entrance Examination
JEE MainJEE AdvancedWB JEEBITSATMHT CET
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
© ExamGOAL 2023