1
AIEEE 2007
+4
-1
Let $$L$$ be the line of intersection of the planes $$2x+3y+z=1$$ and $$x+3y+2z=2.$$ If $$L$$ makes an angle $$\alpha$$ with the positive $$x$$-axis, then cos $$\alpha$$ equals
A
$$1$$
B
$${1 \over {\sqrt 2 }}$$
C
$${1 \over {\sqrt 3 }}$$
D
$${1 \over 2}$$
2
AIEEE 2006
+4
-1
Out of Syllabus
The image of the point $$(-1, 3,4)$$ in the plane $$x-2y=0$$ is :
A
$$\left( { - {{17} \over 3}, - {{19} \over 3},4} \right)$$
B
$$(15,11,4)$$
C
$$\left( { - {{17} \over 3}, - {{19} \over 3},1} \right)$$
D
None of these
3
AIEEE 2006
+4
-1
The two lines $$x=ay+b, z=cy+d;$$ and $$x=a'y+b' ,$$ $$z=c'y+d'$$ are perpendicular to each other if :
A
$$aa'+cc'=-1$$
B
$$aa'+cc'=1$$
C
$${a \over {a'}} + {c \over {c'}} = - 1$$
D
$${a \over {a'}} + {c \over {c'}} = 1$$
4
AIEEE 2005
+4
-1
Out of Syllabus
If the angel $$\theta$$ between the line $${{x + 1} \over 1} = {{y - 1} \over 2} = {{z - 2} \over 2}$$ and

the plane $$2x - y + \sqrt \lambda \,\,z + 4 = 0$$ is such that $$\sin \,\,\theta = {1 \over 3}$$ then value of $$\lambda$$ is :
A
$${5 \over 3}$$
B
$${-3 \over 5}$$
C
$${3 \over 4}$$
D
$${-4 \over 3}$$
EXAM MAP
Medical
NEET