1
JEE Main 2021 (Online) 18th March Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
Let $$\alpha$$, $$\beta$$, $$\gamma$$ be the real roots of the equation, x3 + ax2 + bx + c = 0, (a, b, c $$\in$$ R and a, b $$\ne$$ 0). If the system of equations (in u, v, w) given by $$\alpha$$u + $$\beta$$v + $$\gamma$$w = 0, $$\beta$$u + $$\gamma$$v + $$\alpha$$w = 0; $$\gamma$$u + $$\alpha$$v + $$\beta$$w = 0 has non-trivial solution, then the value of $${{{a^2}} \over b}$$ is
A
5
B
3
C
1
D
0
2
JEE Main 2021 (Online) 18th March Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
Let $$A + 2B = \left[ {\matrix{ 1 & 2 & 0 \cr 6 & { - 3} & 3 \cr { - 5} & 3 & 1 \cr } } \right]$$ and $$2A - B = \left[ {\matrix{ 2 & { - 1} & 5 \cr 2 & { - 1} & 6 \cr 0 & 1 & 2 \cr } } \right]$$. If Tr(A) denotes the sum of all diagonal elements of the matrix A, then Tr(A) $$-$$ Tr(B) has value equal to
A
1
B
2
C
0
D
3
3
JEE Main 2021 (Online) 17th March Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
If x, y, z are in arithmetic progression with common difference d, x $$\ne$$ 3d, and the determinant of the matrix $$\left[ {\matrix{ 3 & {4\sqrt 2 } & x \cr 4 & {5\sqrt 2 } & y \cr 5 & k & z \cr } } \right]$$ is zero, then the value of k2 is :
A
72
B
12
C
36
D
6
4
JEE Main 2021 (Online) 17th March Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
The system of equations kx + y + z = 1, x + ky + z = k and x + y + zk = k2 has no solution if k is equal to :
A
0
B
$$-$$1
C
$$-$$2
D
1
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12