1
JEE Main 2021 (Online) 17th March Morning Shift
MCQ (Single Correct Answer)
+4
-1
Out of Syllabus
Change Language
If $$A = \left( {\matrix{ 0 & {\sin \alpha } \cr {\sin \alpha } & 0 \cr } } \right)$$ and $$\det \left( {{A^2} - {1 \over 2}I} \right) = 0$$, then a possible value of $$\alpha$$ is :
A
$${\pi \over 4}$$
B
$${\pi \over 6}$$
C
$${\pi \over 2}$$
D
$${\pi \over 3}$$
2
JEE Main 2021 (Online) 16th March Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
Let $$A = \left[ {\matrix{ i & { - i} \cr { - i} & i \cr } } \right],i = \sqrt { - 1} $$. Then, the system of linear equations $${A^8}\left[ {\matrix{ x \cr y \cr } } \right] = \left[ {\matrix{ 8 \cr {64} \cr } } \right]$$ has :
A
Exactly two solutions
B
Infinitely many solutions
C
A unique solution
D
No solution
3
JEE Main 2021 (Online) 26th February Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
Consider the following system of equations :

x + 2y $$-$$ 3z = a

2x + 6y $$-$$ 11z = b

x $$-$$ 2y + 7z = c,

where a, b and c are real constants. Then the system of equations :
A
has no solution for all a, b and c
B
has a unique solution when 5a = 2b + c
C
has infinite number of solutions when 5a = 2b + c
D
has a unique solution for all a, b and c
4
JEE Main 2021 (Online) 26th February Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
Let A be a symmetric matrix of order 2 with integer entries. If the sum of the diagonal elements of A2 is 1, then the possible number of such matrices is :
A
6
B
4
C
1
D
12
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12