1
AIEEE 2004
+4
-1
A line with direction cosines proportional to $$2,1,2$$ meets each of the lines $$x=y+a=z$$ and $$x+a=2y=2z$$ . The co-ordinates of each of the points of intersection are given by :
A
$$\left( {2a,3a,3a} \right),\left( {2a,a,a} \right)$$
B
$$\left( {3a,2a,3a} \right),\left( {a,a,a} \right)$$
C
$$\left( {3a,2a,3a} \right),\left( {a,a,2a} \right)$$
D
$$\left( {3a,3a,3a} \right),\left( {a,a,a} \right)$$
2
AIEEE 2004
+4
-1
If the straight lines
$$x=1+s,y=-3$$$$- \lambda s,$$ $$z = 1 + \lambda s$$ and $$x = {t \over 2},y = 1 + t,z = 2 - t,$$ with parameters $$s$$ and $$t$$ respectively, are co-planar, then $$\lambda$$ equals :
A
$$0$$
B
$$-1$$
C
$$- {1 \over 2}$$
D
$$-2$$
3
AIEEE 2003
+4
-1
Out of Syllabus
The shortest distance from the plane $$12x+4y+3z=327$$ to the sphere

$${x^2} + {y^2} + {z^2} + 4x - 2y - 6z = 155$$ is
A
$$39$$
B
$$26$$
C
$$11{4 \over {13}}$$
D
$$13$$
4
AIEEE 2003
+4
-1
The two lines $$x=ay+b,z=cy+d$$ and $$x = a'y + b',z = c'y + d'$$ will be perpendicular, if and only if :
A
$$aa' + cc' + 1 = 0$$
B
$$aa' + bb'cc' + 1 = 0$$
C
$$aa' + bb'cc' = 0$$
D
$$\left( {a + a'} \right)\left( {b + b'} \right) + \left( {c + c'} \right) = 0$$
EXAM MAP
Medical
NEET