1
JEE Main 2019 (Online) 10th January Evening Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
The number of values of $$\theta $$ $$ \in $$ (0, $$\pi $$) for which the system of linear equations

x + 3y + 7z = 0

$$-$$ x + 4y + 7z = 0

(sin3$$\theta $$)x + (cos2$$\theta $$)y + 2z = 0.

has a non-trival solution, is -
A
two
B
one
C
four
D
three
2
JEE Main 2019 (Online) 10th January Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
If the system of equations

x + y + z = 5

x + 2y + 3z = 9

x + 3y + az = $$\beta $$

has infinitely many solutions, then $$\beta $$ $$-$$ $$\alpha $$ equals -
A
8
B
21
C
18
D
5
3
JEE Main 2019 (Online) 10th January Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
Let  d $$ \in $$ R, and 

$$A = \left[ {\matrix{ { - 2} & {4 + d} & {\left( {\sin \theta } \right) - 2} \cr 1 & {\left( {\sin \theta } \right) + 2} & d \cr 5 & {\left( {2\sin \theta } \right) - d} & {\left( { - \sin \theta } \right) + 2 + 2d} \cr } } \right],$$

$$\theta \in \left[ {0,2\pi } \right]$$ If the minimum value of det(A) is 8, then a value of d is -
A
$$-$$ 7
B
$$2\left( {\sqrt 2 + 2} \right)$$
C
$$-$$ 5
D
$$2\left( {\sqrt 2 + 1} \right)$$
4
JEE Main 2019 (Online) 9th January Evening Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
If the system of linear equations
x $$-$$ 4y + 7z = g
       3y $$-$$ 5z = h
$$-$$2x + 5y $$-$$ 9z = k
is consistent, then :
A
g + 2h + k = 0
B
g + h + 2k = 0
C
2g + h + k = 0
D
g + h + k = 0
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12