The number of symmetric matrices of order 3, with all the entries from the set $$\{0,1,2,3,4,5,6,7,8,9\}$$ is :
Let $$A=\left[\begin{array}{cc}1 & \frac{1}{51} \\ 0 & 1\end{array}\right]$$. If $$\mathrm{B}=\left[\begin{array}{cc}1 & 2 \\ -1 & -1\end{array}\right] A\left[\begin{array}{cc}-1 & -2 \\ 1 & 1\end{array}\right]$$, then the sum of all the elements of the matrix $$\sum_\limits{n=1}^{50} B^{n}$$ is equal to
If the system of linear equations
$$ \begin{aligned} & 7 x+11 y+\alpha z=13 \\\\ & 5 x+4 y+7 z=\beta \\\\ & 175 x+194 y+57 z=361 \end{aligned} $$
has infinitely many solutions, then $$\alpha+\beta+2$$ is equal to :
$$\left|\begin{array}{ccc}x+1 & x & x \\ x & x+\lambda & x \\ x & x & x+\lambda^{2}\end{array}\right|=\frac{9}{8}(103 x+81)$$, then $$\lambda, \frac{\lambda}{3}$$ are the roots of the equation :