Let $$P=\left[\begin{array}{cc}\frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{\sqrt{3}}{2}\end{array}\right], A=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$$ and $$Q=P A P^{T}$$. If $$P^{T} Q^{2007} P=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$$, then $$2 a+b-3 c-4 d$$ equal to :
Let $$P$$ be a square matrix such that $$P^{2}=I-P$$. For $$\alpha, \beta, \gamma, \delta \in \mathbb{N}$$, if $$P^{\alpha}+P^{\beta}=\gamma I-29 P$$ and $$P^{\alpha}-P^{\beta}=\delta I-13 P$$, then $$\alpha+\beta+\gamma-\delta$$ is equal to :
For the system of equations
$$x+y+z=6$$
$$x+2 y+\alpha z=10$$
$$x+3 y+5 z=\beta$$, which one of the following is NOT true?
If the system of equations
$$x+y+a z=b$$
$$2 x+5 y+2 z=6$$
$$x+2 y+3 z=3$$
has infinitely many solutions, then $$2 a+3 b$$ is equal to :