1
JEE Main 2024 (Online) 29th January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$\mathrm{A}$$ be a square matrix such that $$\mathrm{AA}^{\mathrm{T}}=\mathrm{I}$$. Then $$\frac{1}{2} A\left[\left(A+A^T\right)^2+\left(A-A^T\right)^2\right]$$ is equal to

A
$$\mathrm{A}^2+\mathrm{A}^{\mathrm{T}}$$
B
$$\mathrm{A}^3+\mathrm{I}$$
C
$$\mathrm{A}^3+\mathrm{A}^{\mathrm{T}}$$
D
$$\mathrm{A}^2+\mathrm{I}$$
2
JEE Main 2024 (Online) 27th January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

The values of $$\alpha$$, for which $$\left|\begin{array}{ccc}1 & \frac{3}{2} & \alpha+\frac{3}{2} \\ 1 & \frac{1}{3} & \alpha+\frac{1}{3} \\ 2 \alpha+3 & 3 \alpha+1 & 0\end{array}\right|=0$$, lie in the interval

A
$$(-2,1)$$
B
$$\left(-\frac{3}{2}, \frac{3}{2}\right)$$
C
$$(-3,0)$$
D
$$(0,3)$$
3
JEE Main 2024 (Online) 27th January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
Consider the matrix $f(x)=\left[\begin{array}{ccc}\cos x & -\sin x & 0 \\ \sin x & \cos x & 0 \\ 0 & 0 & 1\end{array}\right]$.

Given below are two statements :

Statement I : $ f(-x)$ is the inverse of the matrix $f(x)$.

Statement II : $f(x) f(y)=f(x+y)$.

In the light of the above statements, choose the correct answer from the options given below :
A
Statement I is false but Statement II is true
B
Both Statement I and Statement II are false
C
Both Statement I and Statement II are true
D
Statement I is true but Statement II is false
4
JEE Main 2023 (Online) 15th April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Out of Syllabus
Change Language
Let the determinant of a square matrix A of order $m$ be $m-n$, where $m$ and $n$

satisfy $4 m+n=22$ and $17 m+4 n=93$.

If $\operatorname{det}(n \operatorname{adj}(\operatorname{adj}(m A)))=3^{a} 5^{b} 6^{c}$ then $a+b+c$ is equal to :
A
96
B
84
C
109
D
101
JEE Main Subjects
EXAM MAP
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
CBSE
Class 12