Let $$A = \left[ {\matrix{ {{1 \over {\sqrt {10} }}} & {{3 \over {\sqrt {10} }}} \cr {{{ - 3} \over {\sqrt {10} }}} & {{1 \over {\sqrt {10} }}} \cr } } \right]$$ and $$B = \left[ {\matrix{ 1 & { - i} \cr 0 & 1 \cr } } \right]$$, where $$i = \sqrt { - 1} $$. If $$\mathrm{M=A^T B A}$$, then the inverse of the matrix $$\mathrm{AM^{2023}A^T}$$ is
Let $$x,y,z > 1$$ and $$A = \left[ {\matrix{ 1 & {{{\log }_x}y} & {{{\log }_x}z} \cr {{{\log }_y}x} & 2 & {{{\log }_y}z} \cr {{{\log }_z}x} & {{{\log }_z}y} & 3 \cr } } \right]$$. Then $$\mathrm{|adj~(adj~A^2)|}$$ is equal to
Let S$$_1$$ and S$$_2$$ be respectively the sets of all $$a \in \mathbb{R} - \{ 0\} $$ for which the system of linear equations
$$ax + 2ay - 3az = 1$$
$$(2a + 1)x + (2a + 3)y + (a + 1)z = 2$$
$$(3a + 5)x + (a + 5)y + (a + 2)z = 3$$
has unique solution and infinitely many solutions. Then
Let A be a 3 $$\times$$ 3 matrix such that $$\mathrm{|adj(adj(adj~A))|=12^4}$$. Then $$\mathrm{|A^{-1}~adj~A|}$$ is equal to