Let $$A = \left[ {\matrix{ 0 & { - 2} \cr 2 & 0 \cr } } \right]$$. If M and N are two matrices given by $$M = \sum\limits_{k = 1}^{10} {{A^{2k}}} $$ and $$N = \sum\limits_{k = 1}^{10} {{A^{2k - 1}}} $$ then MN2 is :
Let the system of linear equations
x + y + $$\alpha$$z = 2
3x + y + z = 4
x + 2z = 1
have a unique solution (x$$^ * $$, y$$^ * $$, z$$^ * $$). If ($$\alpha$$, x$$^ * $$), (y$$^ * $$, $$\alpha$$) and (x$$^ * $$, $$-$$y$$^ * $$) are collinear points, then the sum of absolute values of all possible values of $$\alpha$$ is
The number of values of $$\alpha$$ for which the system of equations :
x + y + z = $$\alpha$$
$$\alpha$$x + 2$$\alpha$$y + 3z = $$-$$1
x + 3$$\alpha$$y + 5z = 4
is inconsistent, is
Let S = {$$\sqrt{n}$$ : 1 $$\le$$ n $$\le$$ 50 and n is odd}.
Let a $$\in$$ S and $$A = \left[ {\matrix{ 1 & 0 & a \cr { - 1} & 1 & 0 \cr { - a} & 0 & 1 \cr } } \right]$$.
If $$\sum\limits_{a\, \in \,S}^{} {\det (adj\,A) = 100\lambda } $$, then $$\lambda$$ is equal to :