Let A(a, 0), B(b, 2b + 1) and C(0, b), b $$\ne$$ 0, |b| $$\ne$$ 1, be points such that the area of triangle ABC is 1 sq. unit, then the sum of all possible values of a is :
Let $$A = \left( {\matrix{
{[x + 1]} & {[x + 2]} & {[x + 3]} \cr
{[x]} & {[x + 3]} & {[x + 3]} \cr
{[x]} & {[x + 2]} & {[x + 4]} \cr
} } \right)$$, where [t] denotes the greatest integer less than or equal to t. If det(A) = 192, then the set of values of x is the interval :