1
JEE Main 2017 (Online) 8th April Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
Let A be any 3 $$ \times $$ 3 invertible matrix. Then which one of the following is not always true ?
A
adj (A) = $$\left| \right.$$A$$\left| \right.$$.A$$-$$1
B
adj (adj(A)) = $$\left| \right.$$A$$\left| \right.$$.A
C
adj (adj(A)) = $$\left| \right.$$A$$\left| \right.$$2.(adj(A))$$-$$1
D
adj (adj(A)) = $$\left| \, \right.$$A $$\left| \, \right.$$.(adj(A))$$-$$1
2
JEE Main 2017 (Online) 8th April Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
The number of real values of $$\lambda $$ for which the system of linear equations

2x + 4y $$-$$ $$\lambda $$z = 0

4x + $$\lambda $$y + 2z = 0

$$\lambda $$x + 2y + 2z = 0

has infinitely many solutions, is :
A
0
B
1
C
2
D
3
3
JEE Main 2017 (Online) 8th April Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
If

$$S = \left\{ {x \in \left[ {0,2\pi } \right]:\left| {\matrix{ 0 & {\cos x} & { - \sin x} \cr {\sin x} & 0 & {\cos x} \cr {\cos x} & {\sin x} & 0 \cr } } \right| = 0} \right\},$$

then $$\sum\limits_{x \in S} {\tan \left( {{\pi \over 3} + x} \right)} $$ is equal to :
A
$$4 + 2\sqrt 3 $$
B
$$ - 2 + \sqrt 3 $$
C
$$ - 2 - \sqrt 3 $$
D
$$-\,\,4 - 2\sqrt 3 $$
4
JEE Main 2017 (Offline)
MCQ (Single Correct Answer)
+4
-1
Change Language
If $$A = \left[ {\matrix{ 2 & { - 3} \cr { - 4} & 1 \cr } } \right]$$,

then adj(3A2 + 12A) is equal to
A
$$\left[ {\matrix{ {51} & {63} \cr {84} & {72} \cr } } \right]$$
B
$$\left[ {\matrix{ {51} & {84} \cr {63} & {72} \cr } } \right]$$
C
$$\left[ {\matrix{ {72} & {-63} \cr {-84} & {51} \cr } } \right]$$
D
$$\left[ {\matrix{ {72} & {-84} \cr {-63} & {51} \cr } } \right]$$
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12