1
JEE Main 2013 (Offline)
MCQ (Single Correct Answer)
+4
-1
Out of Syllabus
If $$P = \left[ {\matrix{ 1 & \alpha & 3 \cr 1 & 3 & 3 \cr 2 & 4 & 4 \cr } } \right]$$ is the adjoint of a $$3 \times 3$$ matrix $$A$$ and
$$\left| A \right| = 4,$$ then $$\alpha $$ is equal to :
A
$$4$$
B
$$11$$
C
$$5$$
D
$$0$$
2
AIEEE 2012
MCQ (Single Correct Answer)
+4
-1
Out of Syllabus
Let $$A = \left( {\matrix{ 1 & 0 & 0 \cr 2 & 1 & 0 \cr 3 & 2 & 1 \cr } } \right)$$. If $${u_1}$$ and $${u_2}$$ are column matrices such
that $$A{u_1} = \left( {\matrix{ 1 \cr 0 \cr 0 \cr } } \right)$$ and $$A{u_2} = \left( {\matrix{ 0 \cr 1 \cr 0 \cr } } \right),$$ then $${u_1} + {u_2}$$ is equal to :
A
$$\left( {\matrix{ -1 \cr 1 \cr 0 \cr } } \right)$$
B
$$\left( {\matrix{ -1 \cr 1 \cr -1 \cr } } \right)$$
C
$$\left( {\matrix{ -1 \cr -1 \cr 0 \cr } } \right)$$
D
$$\left( {\matrix{ 1 \cr -1 \cr -1 \cr } } \right)$$
3
AIEEE 2012
MCQ (Single Correct Answer)
+4
-1
Out of Syllabus
Let $$P$$ and $$Q$$ be $$3 \times 3$$ matrices $$P \ne Q.$$ If $${P^3} = {Q^3}$$ and
$${P^2}Q = {Q^2}P$$ then determinant of $$\left( {{P^2} + {Q^2}} \right)$$ is equal to :
A
$$-2$$
B
$$1$$
C
$$0$$
D
$$-1$$
4
AIEEE 2011
MCQ (Single Correct Answer)
+4
-1
Let $$A$$ and $$B$$ be two symmetric matrices of order $$3$$.

Statement - 1 : $$A(BA)$$ and $$(AB)$$$$A$$ are symmetric matrices.

Statement - 2 : $$AB$$ is symmetric matrix if matrix multiplication of $$A$$ with $$B$$ is commutative.
A
statement - 1 is true, statement - 2 is true; statement - 2 is not a correct explanation for statement - 1.
B
statement - 1 is true, statement - 2 is false.
C
statement - 1 is false, statement -2 is true
D
statement -1 is true, statement - 2 is true; statement - 2 is a correct explanation for statement - 1.
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12