1
AIEEE 2005
MCQ (Single Correct Answer)
+4
-1
If $${a_1},{a_2},{a_3},........,{a_n},.....$$ are in G.P., then the determinant $$$\Delta = \left| {\matrix{ {\log {a_n}} & {\log {a_{n + 1}}} & {\log {a_{n + 2}}} \cr {\log {a_{n + 3}}} & {\log {a_{n + 4}}} & {\log {a_{n + 5}}} \cr {\log {a_{n + 6}}} & {\log {a_{n + 7}}} & {\log {a_{n + 8}}} \cr } } \right|$$$
is equal to :
A
$$1$$
B
$$0$$
C
$$4$$
D
$$2$$
2
AIEEE 2005
MCQ (Single Correct Answer)
+4
-1
If $${a^2} + {b^2} + {c^2} = - 2$$ and

f$$\left( x \right) = \left| {\matrix{ {1 + {a^2}x} & {\left( {1 + {b^2}} \right)x} & {\left( {1 + {c^2}} \right)x} \cr {\left( {1 + {a^2}} \right)x} & {1 + {b^2}x} & {\left( {1 + {c^2}} \right)x} \cr {\left( {1 + {a^2}} \right)x} & {\left( {1 + {b^2}} \right)x} & {1 + {c^2}x} \cr } } \right|,$$

then f$$(x)$$ is a polynomial of degree :

A
$$1$$
B
$$0$$
C
$$3$$
D
$$2$$
3
AIEEE 2004
MCQ (Single Correct Answer)
+4
-1
Let $$A = \left( {\matrix{ 1 & { - 1} & 1 \cr 2 & 1 & { - 3} \cr 1 & 1 & 1 \cr } } \right).$$ and $$10$$ $$B = \left( {\matrix{ 4 & 2 & 2 \cr { - 5} & 0 & \alpha \cr 1 & { - 2} & 3 \cr } } \right)$$. if $$B$$ is

the inverse of matrix $$A$$, then $$\alpha $$ is

A
$$5$$
B
$$-1$$
C
$$2$$
D
$$-2$$
4
AIEEE 2004
MCQ (Single Correct Answer)
+4
-1
Let $$A = \left( {\matrix{ 0 & 0 & { - 1} \cr 0 & { - 1} & 0 \cr { - 1} & 0 & 0 \cr } } \right)$$. The only correct

statement about the matrix $$A$$ is

A
$${A^2} = 1$$
B
$$A=(-1)I,$$ where $$I$$ is a unit matrix
C
$${A^{ - 1}}$$ does not exist
D
$$A$$ is a zero matrix
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12