1
JEE Main 2014 (Offline)
+4
-1
If $$A$$ is a $$3 \times 3$$ non-singular matrix such that $$AA'=A'A$$ and
$$B = {A^{ - 1}}A',$$ then $$BB'$$ equals:
A
$${B^{ - 1}}$$
B
$$\left( {{B^{ - 1}}} \right)'$$
C
$$I+B$$
D
$$I$$
2
JEE Main 2013 (Offline)
+4
-1
The number of values of $$k$$, for which the system of equations : $$\matrix{ {\left( {k + 1} \right)x + 8y = 4k} \cr {kx + \left( {k + 3} \right)y = 3k - 1} \cr }$$\$
has no solution, is
A
infinite
B
1
C
2
D
3
3
JEE Main 2013 (Offline)
+4
-1
Out of Syllabus
If $$P = \left[ {\matrix{ 1 & \alpha & 3 \cr 1 & 3 & 3 \cr 2 & 4 & 4 \cr } } \right]$$ is the adjoint of a $$3 \times 3$$ matrix $$A$$ and
$$\left| A \right| = 4,$$ then $$\alpha$$ is equal to :
A
$$4$$
B
$$11$$
C
$$5$$
D
$$0$$
4
AIEEE 2012
+4
-1
Out of Syllabus
Let $$A = \left( {\matrix{ 1 & 0 & 0 \cr 2 & 1 & 0 \cr 3 & 2 & 1 \cr } } \right)$$. If $${u_1}$$ and $${u_2}$$ are column matrices such
that $$A{u_1} = \left( {\matrix{ 1 \cr 0 \cr 0 \cr } } \right)$$ and $$A{u_2} = \left( {\matrix{ 0 \cr 1 \cr 0 \cr } } \right),$$ then $${u_1} + {u_2}$$ is equal to :
A
$$\left( {\matrix{ -1 \cr 1 \cr 0 \cr } } \right)$$
B
$$\left( {\matrix{ -1 \cr 1 \cr -1 \cr } } \right)$$
C
$$\left( {\matrix{ -1 \cr -1 \cr 0 \cr } } \right)$$
D
$$\left( {\matrix{ 1 \cr -1 \cr -1 \cr } } \right)$$
EXAM MAP
Medical
NEET