1
JEE Main 2019 (Online) 9th April Evening Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
The total number of matrices
$$A = \left( {\matrix{ 0 & {2y} & 1 \cr {2x} & y & { - 1} \cr {2x} & { - y} & 1 \cr } } \right)$$
(x, y $$ \in $$ R,x $$ \ne $$ y) for which ATA = 3I3 is :-
A
3
B
4
C
2
D
6
2
JEE Main 2019 (Online) 9th April Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
Let $$\alpha $$ and $$\beta $$ be the roots of the equation x2 + x + 1 = 0. Then for y $$ \ne $$ 0 in R,
$$$\left| {\matrix{ {y + 1} & \alpha & \beta \cr \alpha & {y + \beta } & 1 \cr \beta & 1 & {y + \alpha } \cr } } \right|$$$ is equal to
A
y(y2 – 1)
B
y(y2 – 3)
C
y3
D
y3 – 1
3
JEE Main 2019 (Online) 9th April Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
If $$\left[ {\matrix{ 1 & 1 \cr 0 & 1 \cr } } \right]\left[ {\matrix{ 1 & 2 \cr 0 & 1 \cr } } \right]$$$$\left[ {\matrix{ 1 & 3 \cr 0 & 1 \cr } } \right]$$....$$\left[ {\matrix{ 1 & {n - 1} \cr 0 & 1 \cr } } \right] = \left[ {\matrix{ 1 & {78} \cr 0 & 1 \cr } } \right]$$,

then the inverse of $$\left[ {\matrix{ 1 & n \cr 0 & 1 \cr } } \right]$$ is
A
$$\left[ {\matrix{ 1 & { 0} \cr {12} & 1 \cr } } \right]$$
B
$$\left[ {\matrix{ 1 & { 0} \cr {13} & 1 \cr } } \right]$$
C
$$\left[ {\matrix{ 1 & { - 13} \cr 0 & 1 \cr } } \right]$$
D
$$\left[ {\matrix{ 1 & { - 12} \cr 0 & 1 \cr } } \right]$$
4
JEE Main 2019 (Online) 8th April Evening Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
Let the number 2,b,c be in an A.P. and
A = $$\left[ {\matrix{ 1 & 1 & 1 \cr 2 & b & c \cr 4 & {{b^2}} & {{c^2}} \cr } } \right]$$. If det(A) $$ \in $$ [2, 16], then c lies in the interval :
A
[2, 3)
B
[4, 6]
C
(2 + 23/4, 4)
D
[3, 2 + 23/4]
JEE Main Subjects
EXAM MAP