1
JEE Main 2021 (Online) 31st August Morning Shift
MCQ (Single Correct Answer)
+4
-1
The number of real roots of the equation

$${e^{4x}} + 2{e^{3x}} - {e^x} - 6 = 0$$ is :
A
2
B
4
C
1
D
0
2
JEE Main 2021 (Online) 27th August Evening Shift
MCQ (Single Correct Answer)
+4
-1
A box open from top is made from a rectangular sheet of dimension a $$\times$$ b by cutting squares each of side x from each of the four corners and folding up the flaps. If the volume of the box is maximum, then x is equal to :
A
$${{a + b - \sqrt {{a^2} + {b^2} - ab} } \over {12}}$$
B
$${{a + b - \sqrt {{a^2} + {b^2} + ab} } \over 6}$$
C
$${{a + b - \sqrt {{a^2} + {b^2} - ab} } \over 6}$$
D
$${{a + b + \sqrt {{a^2} + {b^2} + ab} } \over 6}$$
3
JEE Main 2021 (Online) 27th August Morning Shift
MCQ (Single Correct Answer)
+4
-1
A wire of length 20 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into a regular hexagon. Then the length of the side (in meters) of the hexagon, so that the combined area of the square and the hexagon is minimum, is :
A
$${5 \over {2 + \sqrt 3 }}$$
B
$${{10} \over {2 + 3\sqrt 3 }}$$
C
$${5 \over {3 + \sqrt 3 }}$$
D
$${{10} \over {3 + 2\sqrt 3 }}$$
4
JEE Main 2021 (Online) 20th July Morning Shift
MCQ (Single Correct Answer)
+4
-1
Let 'a' be a real number such that the function f(x) = ax2 + 6x $$-$$ 15, x $$\in$$ R is increasing in $$\left( { - \infty ,{3 \over 4}} \right)$$ and decreasing in $$\left( {{3 \over 4},\infty } \right)$$. Then the function g(x) = ax2 $$-$$ 6x + 15, x$$\in$$R has a :
A
local maximum at x = $$-$$ $${{3 \over 4}}$$
B
local minimum at x = $$-$$$${{3 \over 4}}$$
C
local maximum at x = $${{3 \over 4}}$$
D
local minimum at x = $${{3 \over 4}}$$
JEE Main Subjects
EXAM MAP
Joint Entrance Examination
JEE MainJEE AdvancedWB JEE
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Medical
NEET