$$\max _\limits{0 \leq x \leq \pi}\left\{x-2 \sin x \cos x+\frac{1}{3} \sin 3 x\right\}=$$
If the local maximum value of the function $$f(x)=\left(\frac{\sqrt{3 e}}{2 \sin x}\right)^{\sin ^{2} x}, x \in\left(0, \frac{\pi}{2}\right)$$ , is $$\frac{k}{e}$$, then $$\left(\frac{k}{e}\right)^{8}+\frac{k^{8}}{e^{5}}+k^{8}$$ is equal to
Let $$f:[2,4] \rightarrow \mathbb{R}$$ be a differentiable function such that $$\left(x \log _{e} x\right) f^{\prime}(x)+\left(\log _{e} x\right) f(x)+f(x) \geq 1, x \in[2,4]$$ with $$f(2)=\frac{1}{2}$$ and $$f(4)=\frac{1}{4}$$.
Consider the following two statements :
(A) : $$f(x) \leq 1$$, for all $$x \in[2,4]$$
(B) : $$f(x) \geq \frac{1}{8}$$, for all $$x \in[2,4]$$
Then,
Let $$\mathrm{g}(x)=f(x)+f(1-x)$$ and $$f^{\prime \prime}(x) > 0, x \in(0,1)$$. If $$\mathrm{g}$$ is decreasing in the interval $$(0, a)$$ and increasing in the interval $$(\alpha, 1)$$, then $$\tan ^{-1}(2 \alpha)+\tan ^{-1}\left(\frac{1}{\alpha}\right)+\tan ^{-1}\left(\frac{\alpha+1}{\alpha}\right)$$ is equal to :