1
JEE Main 2022 (Online) 26th July Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If the maximum value of $$a$$, for which the function $$f_{a}(x)=\tan ^{-1} 2 x-3 a x+7$$ is non-decreasing in $$\left(-\frac{\pi}{6}, \frac{\pi}{6}\right)$$, is $$\bar{a}$$, then $$f_{\bar{a}}\left(\frac{\pi}{8}\right)$$ is equal to :

A
$$ 8-\frac{9 \pi}{4\left(9+\pi^{2}\right)} $$
B
$$8-\frac{4 \pi}{9\left(4+\pi^{2}\right)}$$
C
$$8\left(\frac{1+\pi^{2}}{9+\pi^{2}}\right)$$
D
$$8-\frac{\pi}{4}$$
2
JEE Main 2022 (Online) 25th July Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If the absolute maximum value of the function $$f(x)=\left(x^{2}-2 x+7\right) \mathrm{e}^{\left(4 x^{3}-12 x^{2}-180 x+31\right)}$$ in the interval $$[-3,0]$$ is $$f(\alpha)$$, then :

A
$$\alpha=0$$
B
$$ \alpha=-3$$
C
$$\alpha \in(-1,0)$$
D
$$\alpha \in(-3,-1]$$
3
JEE Main 2022 (Online) 25th July Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

The curve $$y(x)=a x^{3}+b x^{2}+c x+5$$ touches the $$x$$-axis at the point $$\mathrm{P}(-2,0)$$ and cuts the $$y$$-axis at the point $$Q$$, where $$y^{\prime}$$ is equal to 3 . Then the local maximum value of $$y(x)$$ is:

A
$$\frac{27}{4}$$
B
$$\frac{29}{4}$$
C
$$\frac{37}{4}$$
D
$$\frac{9}{2}$$
4
JEE Main 2022 (Online) 30th June Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If xy4 attains maximum value at the point (x, y) on the line passing through the points (50 + $$\alpha$$, 0) and (0, 50 + $$\alpha$$), $$\alpha$$ > 0, then (x, y) also lies on the line :

A
y = 4x
B
x = 4y
C
y = 4x + $$\alpha$$
D
x = 4y $$-$$ $$\alpha$$
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12