1
JEE Main 2024 (Online) 4th April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let the sum of the maximum and the minimum values of the function $$f(x)=\frac{2 x^2-3 x+8}{2 x^2+3 x+8}$$ be $$\frac{m}{n}$$, where $$\operatorname{gcd}(\mathrm{m}, \mathrm{n})=1$$. Then $$\mathrm{m}+\mathrm{n}$$ is equal to :

A
217
B
182
C
201
D
195
2
JEE Main 2024 (Online) 1st February Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
If $5 f(x)+4 f\left(\frac{1}{x}\right)=x^2-2, \forall x \neq 0$ and $y=9 x^2 f(x)$, then $y$ is strictly increasing in :
A
$\left(0, \frac{1}{\sqrt{5}}\right) \cup\left(\frac{1}{\sqrt{5}}, \infty\right)$
B
$\left(-\frac{1}{\sqrt{5}}, 0\right) \cup\left(\frac{1}{\sqrt{5}}, \infty\right)$
C
$\left(-\frac{1}{\sqrt{5}}, 0\right) \cup\left(0, \frac{1}{\sqrt{5}}\right)$
D
$\left(-\infty, \frac{1}{\sqrt{5}}\right) \cup\left(0, \frac{1}{\sqrt{5}}\right)$
3
JEE Main 2024 (Online) 31st January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$f: \rightarrow \mathbb{R} \rightarrow(0, \infty)$$ be strictly increasing function such that $$\lim _\limits{x \rightarrow \infty} \frac{f(7 x)}{f(x)}=1$$. Then, the value of $$\lim _\limits{x \rightarrow \infty}\left[\frac{f(5 x)}{f(x)}-1\right]$$ is equal to

A
0
B
4
C
1
D
7/5
4
JEE Main 2024 (Online) 31st January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If the function $$f:(-\infty,-1] \rightarrow(a, b]$$ defined by $$f(x)=e^{x^3-3 x+1}$$ is one - one and onto, then the distance of the point $$P(2 b+4, a+2)$$ from the line $$x+e^{-3} y=4$$ is :

A
$$2 \sqrt{1+e^6}$$
B
$$\sqrt{1+e^6}$$
C
$$3 \sqrt{1+e^6}$$
D
$$4 \sqrt{1+e^6}$$
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12