1
JEE Main 2020 (Online) 3rd September Evening Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
If the surface area of a cube is increasing at a rate of 3.6 cm2/sec, retaining its shape; then the rate of change of its volume (in cm3/sec), when the length of a side of the cube is 10 cm, is :
A
9
B
10
C
18
D
20
2
JEE Main 2020 (Online) 3rd September Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
The function, f(x) = (3x – 7)x2/3, x $$ \in $$ R, is increasing for all x lying in :
A
$$\left( { - \infty ,0} \right) \cup \left( {{3 \over 7},\infty } \right)$$
B
$$\left( { - \infty ,0} \right) \cup \left( {{{14} \over {15}},\infty } \right)$$
C
$$\left( { - \infty ,{{14} \over {15}}} \right)$$
D
$$\left( { - \infty ,{{14} \over {15}}} \right) \cup \left( {0,\infty } \right)$$
3
JEE Main 2020 (Online) 2nd September Evening Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
Let f : (–1, $$\infty $$) $$ \to $$ R be defined by f(0) = 1 and
f(x) = $${1 \over x}{\log _e}\left( {1 + x} \right)$$, x $$ \ne $$ 0. Then the function f :
A
decreases in (–1, $$\infty $$)
B
decreases in (–1, 0) and increases in (0, $$\infty $$)
C
increases in (–1, $$\infty $$)
D
increases in (–1, 0) and decreases in (0, $$\infty $$)
4
JEE Main 2020 (Online) 2nd September Evening Slot
MCQ (Single Correct Answer)
+4
-1
Out of Syllabus
Change Language
The equation of the normal to the curve
y = (1+x)2y + cos 2(sin–1x) at x = 0 is :
A
y = 4x + 2
B
x + 4y = 8
C
y + 4x = 2
D
2y + x = 4
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12