1
JEE Main 2023 (Online) 11th April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Out of Syllabus
Change Language

Let $$f:[2,4] \rightarrow \mathbb{R}$$ be a differentiable function such that $$\left(x \log _{e} x\right) f^{\prime}(x)+\left(\log _{e} x\right) f(x)+f(x) \geq 1, x \in[2,4]$$ with $$f(2)=\frac{1}{2}$$ and $$f(4)=\frac{1}{4}$$.

Consider the following two statements :

(A) : $$f(x) \leq 1$$, for all $$x \in[2,4]$$

(B) : $$f(x) \geq \frac{1}{8}$$, for all $$x \in[2,4]$$

Then,

A
Neither statement (A) nor statement (B) is true
B
Only statement (A) is true
C
Only statement (B) is true
D
Both the statements $$(\mathrm{A})$$ and (B) are true
2
JEE Main 2023 (Online) 10th April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$\mathrm{g}(x)=f(x)+f(1-x)$$ and $$f^{\prime \prime}(x) > 0, x \in(0,1)$$. If $$\mathrm{g}$$ is decreasing in the interval $$(0, a)$$ and increasing in the interval $$(\alpha, 1)$$, then $$\tan ^{-1}(2 \alpha)+\tan ^{-1}\left(\frac{1}{\alpha}\right)+\tan ^{-1}\left(\frac{\alpha+1}{\alpha}\right)$$ is equal to :

A
$$\frac{3 \pi}{4}$$
B
$$\pi$$
C
$$\frac{5 \pi}{4}$$
D
$$\frac{3 \pi}{2}$$
3
JEE Main 2023 (Online) 10th April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Out of Syllabus
Change Language

The slope of tangent at any point (x, y) on a curve $$y=y(x)$$ is $${{{x^2} + {y^2}} \over {2xy}},x > 0$$. If $$y(2) = 0$$, then a value of $$y(8)$$ is :

A
$$ - 4\sqrt 2 $$
B
$$2\sqrt 3 $$
C
$$4\sqrt 3 $$
D
$$ - 2\sqrt 3 $$
4
JEE Main 2023 (Online) 10th April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

A square piece of tin of side 30 cm is to be made into a box without top by cutting a square from each corner and folding up the flaps to form a box. If the volume of the box is maximum, then its surface area (in cm$$^2$$) is equal to :

A
1025
B
900
C
800
D
675
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12