Let $$g(x)=3 f\left(\frac{x}{3}\right)+f(3-x)$$ and $$f^{\prime \prime}(x)>0$$ for all $$x \in(0,3)$$. If $$g$$ is decreasing in $$(0, \alpha)$$ and increasing in $$(\alpha, 3)$$, then $$8 \alpha$$ is :

$$\max _\limits{0 \leq x \leq \pi}\left\{x-2 \sin x \cos x+\frac{1}{3} \sin 3 x\right\}=$$

If the local maximum value of the function $$f(x)=\left(\frac{\sqrt{3 e}}{2 \sin x}\right)^{\sin ^{2} x}, x \in\left(0, \frac{\pi}{2}\right)$$ , is $$\frac{k}{e}$$, then $$\left(\frac{k}{e}\right)^{8}+\frac{k^{8}}{e^{5}}+k^{8}$$ is equal to

Let $$f:[2,4] \rightarrow \mathbb{R}$$ be a differentiable function such that $$\left(x \log _{e} x\right) f^{\prime}(x)+\left(\log _{e} x\right) f(x)+f(x) \geq 1, x \in[2,4]$$ with $$f(2)=\frac{1}{2}$$ and $$f(4)=\frac{1}{4}$$.

Consider the following two statements :

(A) : $$f(x) \leq 1$$, for all $$x \in[2,4]$$

(B) : $$f(x) \geq \frac{1}{8}$$, for all $$x \in[2,4]$$

Then,