Let the function $ f(x) = \frac{x}{3} + \frac{3}{x} + 3, x \neq 0 $ be strictly increasing in $(-\infty, \alpha_1) \cup (\alpha_2, \infty)$ and strictly decreasing in $(\alpha_3, \alpha_4) \cup (\alpha_4, \alpha_5)$. Then $ \sum\limits_{i=1}^{5} \alpha_i^2 $ is equal to
If the function $f(x)=2 x^3-9 a x^2+12 \mathrm{a}^2 x+1$, where $\mathrm{a}>0$, attains its local maximum and local minimum values at p and q , respectively, such that $\mathrm{p}^2=\mathrm{q}$, then $f(3)$ is equal to :
The sum of all local minimum values of the function
$$\mathrm{f}(x)=\left\{\begin{array}{lr} 1-2 x, & x<-1 \\ \frac{1}{3}(7+2|x|), & -1 \leq x \leq 2 \\ \frac{11}{18}(x-4)(x-5), & x>2 \end{array}\right.$$
is
Let $(2,3)$ be the largest open interval in which the function $f(x)=2 \log _{\mathrm{e}}(x-2)-x^2+a x+1$ is strictly increasing and (b, c) be the largest open interval, in which the function $\mathrm{g}(x)=(x-1)^3(x+2-\mathrm{a})^2$ is strictly decreasing. Then $100(\mathrm{a}+\mathrm{b}-\mathrm{c})$ is equal to :