1
JEE Main 2025 (Online) 7th April Evening Shift
MCQ (Single Correct Answer)
+4
-1

Let f : ℝ $$ \to $$ ℝ be a polynomial function of degree four having extreme values at x = 4 and x = 5. If $ \lim\limits_{x \to 0} \frac{f(x)}{x^2} = 5 $, then f(2) is equal to :

A

8

B

10

C

12

D

14

2
JEE Main 2025 (Online) 8th April Evening Shift
MCQ (Single Correct Answer)
+4
-1

Let the function $ f(x) = \frac{x}{3} + \frac{3}{x} + 3, x \neq 0 $ be strictly increasing in $(-\infty, \alpha_1) \cup (\alpha_2, \infty)$ and strictly decreasing in $(\alpha_3, \alpha_4) \cup (\alpha_4, \alpha_5)$. Then $ \sum\limits_{i=1}^{5} \alpha_i^2 $ is equal to

A

48

B

40

C

36

D

28

3
JEE Main 2025 (Online) 2nd April Morning Shift
MCQ (Single Correct Answer)
+4
-1

If the function $f(x)=2 x^3-9 a x^2+12 \mathrm{a}^2 x+1$, where $\mathrm{a}>0$, attains its local maximum and local minimum values at p and q , respectively, such that $\mathrm{p}^2=\mathrm{q}$, then $f(3)$ is equal to :

A
55
B
37
C
10
D
23
4
JEE Main 2025 (Online) 28th January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

The sum of all local minimum values of the function

$$\mathrm{f}(x)=\left\{\begin{array}{lr} 1-2 x, & x<-1 \\ \frac{1}{3}(7+2|x|), & -1 \leq x \leq 2 \\ \frac{11}{18}(x-4)(x-5), & x>2 \end{array}\right.$$

is

A
$\frac{167}{72}$
B
$\frac{157}{72}$
C
$\frac{171}{72}$
D
$\frac{131}{72}$
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12