1
JEE Main 2025 (Online) 7th April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let f : ℝ $$ \to $$ ℝ be a polynomial function of degree four having extreme values at x = 4 and x = 5. If $ \lim\limits_{x \to 0} \frac{f(x)}{x^2} = 5 $, then f(2) is equal to :

A

8

B

10

C

12

D

14

2
JEE Main 2025 (Online) 7th April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $x=-1$ and $x=2$ be the critical points of the function $f(x)=x^3+a x^2+b \log _{\mathrm{e}}|x|+1, x \neq 0$. Let $m$ and M respectively be the absolute minimum and the absolute maximum values of $f$ in the interval $\left[-2,-\frac{1}{2}\right]$. Then $|\mathrm{M}+m|$ is equal to $\left(\right.$ Take $\left.\log _{\mathrm{e}} 2=0.7\right):$

A
21.1
B
19.8
C
22.1
D
20.9
3
JEE Main 2025 (Online) 4th April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $\mathrm{a}>0$. If the function $f(x)=6 x^3-45 \mathrm{a} x^2+108 \mathrm{a}^2 x+1$ attains its local maximum and minimum values at the points $x_1$ and $x_2$ respectively such that $x_1 x_2=54$, then $\mathrm{a}+x_1+x_2$ is equal to :

A
15
B
13
C
24
D
18
4
JEE Main 2025 (Online) 3rd April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
The shortest distance between the curves $y^2=8 x$ and $x^2+y^2+12 y+35=0$ is:
A
$2 \sqrt{3}-1$
B
$2 \sqrt{2}-1$
C
$3 \sqrt{2}-1$
D
$\sqrt{2}$
JEE Main Subjects
EXAM MAP