NEW
New Website Launch
Experience the best way to solve previous year questions with mock tests (very detailed analysis), bookmark your favourite questions, practice etc...
1

JEE Main 2021 (Online) 1st September Evening Shift

MCQ (Single Correct Answer)
The function $$f(x) = {x^3} - 6{x^2} + ax + b$$ is such that $$f(2) = f(4) = 0$$. Consider two statements :

Statement 1 : there exists x1, x2 $$\in$$(2, 4), x1 < x2, such that f'(x1) = $$-$$1 and f'(x2) = 0.

Statement 2 : there exists x3, x4 $$\in$$ (2, 4), x3 < x4, such that f is decreasing in (2, x4), increasing in (x4, 4) and $$2f'({x_3}) = \sqrt 3 f({x_4})$$.

Then
A
both Statement 1 and Statement 2 are true
B
Statement 1 is false and Statement 2 is true
C
both Statement 1 and Statement 2 are false
D
Statement 1 is true and Statement 2 is false

Explanation

$$f(x) = {x^3} - 6{x^2} + ax + b$$

$$f(2) = 8 - 24 + 2a + b = 0$$

$$2a + b = 16$$ .... (1)

$$f(4) = 64 - 96 + 4a + b = 0$$

$$4a + b = 32$$ .... (2)

Solving (1) and (2)

a = 8, b = 0

$$f(x) = {x^3} - 6{x^2} + 8x$$

$$f'(x) = 3{x^2} - 12x + 8$$

$$f''(x) = 6x - 12$$

$$\Rightarrow$$ f'(x) is $$ \uparrow $$ for x > 2, and f'(x) is $$ \downarrow $$ for x < 2

$$f'(2) = 12 - 24 + 8 = - 4$$

$$f'(4) = 48 - 48 + 8 = 8$$

$$f'(x) = 3{x^2} - 12x + 8$$

vertex (2, $$-$$4)

f'(2) = $$-$$4, f'(4) = 8, f'(3) = 27 $$-$$ 36 + 8


f'(x1) = $$-$$1, then x1 = 3

f'(x2) = 0

Again

f'(x) < 0 for x $$\in$$ (2, x4)

f'(x) > 0 for x $$\in$$ (x4, 4)

x4 $$\in$$ (3, 4)

f(x) = x3 $$-$$ 6x2 + 8x

f(3) = 27 $$-$$ 54 + 24 = $$-$$3

f(4) = 64 $$-$$ 96 + 32 = 0

For x4(3, 4)

f(x4) < $$-$$3$$\sqrt 3 $$

and f'(x3) > $$-$$4

2f'(x3) > $$-$$8

So, 2f'(x3) = $$\sqrt 3 $$ f(x4)

Correct Ans. (a).
2

JEE Main 2021 (Online) 27th August Evening Shift

MCQ (Single Correct Answer)
If $$y(x) = {\cot ^{ - 1}}\left( {{{\sqrt {1 + \sin x} + \sqrt {1 - \sin x} } \over {\sqrt {1 + \sin x} - \sqrt {1 - \sin x} }}} \right),x \in \left( {{\pi \over 2},\pi } \right)$$, then $${{dy} \over {dx}}$$ at $$x = {{5\pi } \over 6}$$ is :
A
$$ - {1 \over 2}$$
B
$$-$$1
C
$${1 \over 2}$$
D
0

Explanation

$$y(x) = {\cot ^{ - 1}}\left[ {{{\cos {x \over 2} + \sin {x \over 2} + \sin {x \over 2} - \cos {x \over 2}} \over {\cos {x \over 2} + \sin {x \over 2} - \sin {x \over 2} + \cos {x \over 2}}}} \right]$$

$$y(x) = {\cot ^{ - 1}}\left( {\tan {x \over 2}} \right) = {\pi \over 2} - {x \over 2}$$

$$y'(x) = {{ - 1} \over 2}$$
3

JEE Main 2021 (Online) 26th August Evening Shift

MCQ (Single Correct Answer)
The local maximum value of the function $$f(x) = {\left( {{2 \over x}} \right)^{{x^2}}}$$, x > 0, is
A
$${\left( {2\sqrt e } \right)^{{1 \over e}}}$$
B
$${\left( {{4 \over {\sqrt e }}} \right)^{{e \over 4}}}$$
C
$${(e)^{{2 \over e}}}$$
D
1

Explanation

$$f(x) = {\left( {{2 \over x}} \right)^{{x^2}}}$$ ; x > 0

$$\ln f(x) = {x^2}(\ln 2 - \ln x)$$

$$f'(x) = f(x)\{ - x + (\ln 2 - \ln x)2x\} $$

$$f'(x) = \underbrace {f(x)}_ + \,.\,\underbrace x_ + \underbrace {(2\ln 2 - 2\ln x - 1)}_{g(x)}$$

$$g(x) = 2{\ln ^2} - 2\ln x - 1$$

$$ = \ln {4 \over {{x^2}}} - 1 = 0 \Rightarrow x = {2 \over {\sqrt e }}$$



$$LM = {2 \over {\sqrt e }}$$

Local maximum value = $${\left( {{2 \over {2/\sqrt e }}} \right)^{{4 \over e}}} = {e^{{2 \over e}}}$$
4

JEE Main 2021 (Online) 20th July Morning Shift

MCQ (Single Correct Answer)
Let $$A = [{a_{ij}}]$$ be a 3 $$\times$$ 3 matrix, where $${a_{ij}} = \left\{ {\matrix{ 1 & , & {if\,i = j} \cr { - x} & , & {if\,\left| {i - j} \right| = 1} \cr {2x + 1} & , & {otherwise.} \cr } } \right.$$

Let a function f : R $$\to$$ R be defined as f(x) = det(A). Then the sum of maximum and minimum values of f on R is equal to:
A
$$ - {{20} \over {27}}$$
B
$${{88} \over {27}}$$
C
$${{20} \over {27}}$$
D
$$ - {{88} \over {27}}$$

Explanation

$$A = \left[ {\matrix{ 1 & { - x} & {2x + 1} \cr { - x} & 1 & { - x} \cr {2x + 1} & { - x} & 1 \cr } } \right]$$

$$\left| A \right| = 4{x^3} - 4{x^2} - 4x = f(x)$$

$$f'(x) = 4(3{x^2} - 2x - 1) = 0$$

$$ \Rightarrow x = 1;x = {{ - 1} \over 3}$$

$$\therefore$$ $$f(1) = - 4;f\left( { - {1 \over 3}} \right) = {{20} \over {27}}$$

Sum $$ = - 4 + {{20} \over 7} = - {{88} \over {27}}$$

Joint Entrance Examination

JEE Main JEE Advanced WB JEE

Graduate Aptitude Test in Engineering

GATE CSE GATE ECE GATE EE GATE ME GATE CE GATE PI GATE IN

Medical

NEET

CBSE

Class 12