1
AIEEE 2008
MCQ (Single Correct Answer)
+4
-1
Suppose the cubic $${x^3} - px + q$$ has three distinct real roots
where $$p>0$$ and $$q>0$$. Then which one of the following holds?
A
The cubic has minima at $$\sqrt {{p \over 3}} $$ and maxima at $$-\sqrt {{p \over 3}} $$
B
The cubic has minima at $$-\sqrt {{p \over 3}} $$ and maxima at $$\sqrt {{p \over 3}} $$
C
The cubic has minima at both $$\sqrt {{p \over 3}} $$ and $$-\sqrt {{p \over 3}} $$
D
The cubic has maxima at both $$\sqrt {{p \over 3}} $$ and $$-\sqrt {{p \over 3}} $$
2
AIEEE 2007
MCQ (Single Correct Answer)
+4
-1
The function $$f\left( x \right) = {\tan ^{ - 1}}\left( {\sin x + \cos x} \right)$$ is an incresing function in
A
$$\left( {0,{\pi \over 2}} \right)$$
B
$$\left( { - {\pi \over 2},{\pi \over 2}} \right)$$
C
$$\left( { {\pi \over 4},{\pi \over 2}} \right)$$
D
$$\left( { - {\pi \over 2},{\pi \over 4}} \right)$$
3
AIEEE 2007
MCQ (Single Correct Answer)
+4
-1
Out of Syllabus
A value of $$c$$ for which conclusion of Mean Value Theorem holds for the function $$f\left( x \right) = {\log _e}x$$ on the interval $$\left[ {1,3} \right]$$ is
A
$${\log _3}e$$
B
$${\log _e}3$$
C
$$2\,\,{\log _3}e$$
D
$${1 \over 2}{\log _3}e$$
4
AIEEE 2007
MCQ (Single Correct Answer)
+4
-1
If $$p$$ and $$q$$ are positive real numbers such that $${p^2} + {q^2} = 1$$, then the maximum value of $$(p+q)$$ is
A
$${1 \over 2}$$
B
$${1 \over {\sqrt 2 }}$$
C
$${\sqrt 2 }$$
D
$$2$$
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12