1
AIEEE 2008
+4
-1
Suppose the cubic $${x^3} - px + q$$ has three distinct real roots
where $$p>0$$ and $$q>0$$. Then which one of the following holds?
A
The cubic has minima at $$\sqrt {{p \over 3}}$$ and maxima at $$-\sqrt {{p \over 3}}$$
B
The cubic has minima at $$-\sqrt {{p \over 3}}$$ and maxima at $$\sqrt {{p \over 3}}$$
C
The cubic has minima at both $$\sqrt {{p \over 3}}$$ and $$-\sqrt {{p \over 3}}$$
D
The cubic has maxima at both $$\sqrt {{p \over 3}}$$ and $$-\sqrt {{p \over 3}}$$
2
AIEEE 2008
+4
-1
How many real solutions does the equation
$${x^7} + 14{x^5} + 16{x^3} + 30x - 560 = 0$$ have?
A
$$7$$
B
$$1$$
C
$$3$$
D
$$5$$
3
AIEEE 2007
+4
-1
The function $$f\left( x \right) = {\tan ^{ - 1}}\left( {\sin x + \cos x} \right)$$ is an incresing function in
A
$$\left( {0,{\pi \over 2}} \right)$$
B
$$\left( { - {\pi \over 2},{\pi \over 2}} \right)$$
C
$$\left( { {\pi \over 4},{\pi \over 2}} \right)$$
D
$$\left( { - {\pi \over 2},{\pi \over 4}} \right)$$
4
AIEEE 2007
+4
-1
Out of Syllabus
A value of $$c$$ for which conclusion of Mean Value Theorem holds for the function $$f\left( x \right) = {\log _e}x$$ on the interval $$\left[ {1,3} \right]$$ is
A
$${\log _3}e$$
B
$${\log _e}3$$
C
$$2\,\,{\log _3}e$$
D
$${1 \over 2}{\log _3}e$$
EXAM MAP
Medical
NEET